Skip to main content
Log in

Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The low electronic conductivity and moderate lithium-ion transfer capability of Li2ZnTi3O8 restrict its application to some degree. In this work, in light of the high affinity of TiO2 surface with carboxylic acids, citric acid was adopted as a carbon source to form uniform carbon coating layer on LZTO particles. When the mixture of LZTO and citric acid with a mass ratio of 1:0.2 was roasted at 700 °C for 5 h, the product demonstrated wonderful rate performance (revealing capacities of 232.6, 202.8, 184.8, 165.6 and 106.7 mAh g−1 at 0.1, 0.2, 0.4, 0.8 and 1.6 A g−1, respectively) as well as outstanding long-term cycling stability (maintaining a capacity of 186.9 mAh g−1 for 1000 cycles at 0.5 A g−1). Combining structure and composition characterizations with electrochemical impedance spectra analysis, the amorphous carbon derived from citric acid was uniformly coated on the LZTO particles by virtue of the intense interaction between LZTO and carboxyl groups. Better particle dispersion and enhanced pseudocapacitive contribution were obtained resulted from the carbon coating, remarkably ameliorating the electronic and ionic conductivities of LZTO and alleviating polarization, thus beneficial to optimizing the electrochemical behavior of LZTO.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Etacheri V, Marom R, Ran E, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries. Energy Environ Sci 4:3243–3262

    CAS  Google Scholar 

  2. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    CAS  Google Scholar 

  3. Zhang Y, Park S-J (2019) Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution. Chem Eng J 369:353. https://doi.org/10.1016/j.cej.2019.03.083

    Article  CAS  Google Scholar 

  4. Zhang Y, Park S-J (2018) Formation of hollow MoO3/SnS2 heterostructured nanotubes for efficient light-driven hydrogen peroxide production. J Mater Chem A 6:20304–20312. https://doi.org/10.1039/c8ta08385a

    Article  CAS  Google Scholar 

  5. Hernandez VS, Martinez LMT, Mather GC, West AR (1996) Stoichiometry, structures and polymorphism of spinel-like phases, Li1.33xZn2–2xTi1+0.67xO4. J Mater Chem 6:1533–1536

    CAS  Google Scholar 

  6. West A (1998) Crystal chemistry and physical properties of complex lithium spinels Li2MM′3O8 (M = Mg Co, Ni, Zn; M′ = Ti, Ge). J Mater Chem 8:1273–1280

    Google Scholar 

  7. Tang H, Tang Z, Du C, Qie F, Zhu J (2014) Ag-doped Li2ZnTi3O8 as a high rate anode material for rechargeable lithium-ion batteries. Electrochim Acta 120:187–192

    CAS  Google Scholar 

  8. Chen W, Zhou Z, Wang R et al (2015) High performance Na-doped lithium zinc titanate as anode material for Li-ion batteries. RSC Adv 5:49890–49898

    CAS  Google Scholar 

  9. Tang H, Zhu J, Tang Z, Ma C (2014) Al-doped Li2ZnTi3O8 as an effective anode material for lithium-ion batteries with good rate capabilities. J Electroanal Chem 731:60–66

    CAS  Google Scholar 

  10. Chen C, Ai C, Liu X, Wu Y (2017) Advanced electrochemical properties of Ce-modified Li2ZnTi3O8 anode material for lithium-ion batteries. Electrochim Acta 227:285–293

    CAS  Google Scholar 

  11. Yi TF, Wu JZ, Yuan J, Zhu Y, Wang P (2015) Rapid lithiation and de-lithiation property of V-doped Li2ZnTi3O8 as anode material for lithium-ion battery. ACS Sustainable Chem Eng 3:3062–3069

    CAS  Google Scholar 

  12. Li W, Wu L, Li Z, Lei G, Xiao Q, Ping Z (2011) Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anode material for lithium-ion batteries. Electrochim Acta 56:5343–5346

    Google Scholar 

  13. Yang H, Park J, Kim C-S et al (2018) Boosted electrochemical performance of Li2ZnTi3O8 enabled by ion-conductive Li2ZrO3 concomitant with superficial Zr-doping. J Power Sources 379:270–277

    CAS  Google Scholar 

  14. Yang H, Wang XH, Qi YX, Lun N, Cao YM, Bai YJ (2017) Improving the electrochemical performance of Li2ZnTi3O8 by surface KCl modification. ACS Sustain Chem Eng 5:6099–6106

    CAS  Google Scholar 

  15. Yang H, Park J, Kim CS et al (2017) Uniform surface modification of Li2ZnTi3O8 by liquated Na2MoO4 to boost electrochemical performance. ACS Appl Mater Interfaces 9:43603–43613. https://doi.org/10.1021/acsami.7b12208

    Article  CAS  Google Scholar 

  16. Yang H, Lun N, Qi Y-X et al (2019) Li2ZnTi3O8 coated with uniform lithium magnesium silicate layer revealing enhanced rate capability as anode material for Li-ion battery. Electrochim Acta 315:24–32

    CAS  Google Scholar 

  17. Tang H, Zan L, Zhu J, Ma Y, Zhao N, Tang Z (2016) High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery. J Alloys Compd 667:82–90

    CAS  Google Scholar 

  18. Tang H, Zhu J, Ma C, Tang Z (2014) Lithium cobalt oxide coated lithium zinc titanate anode material with an enhanced high rate capability and long lifespan for lithium-ion batteries. Electrochim Acta 144:76–84. https://doi.org/10.1016/j.electacta.2014.08.034

    Article  CAS  Google Scholar 

  19. Li ZF, Li H, Cui YH et al (2017) Li2MoO4 modified Li2ZnTi3O8 as a high property anode material for lithium ion battery. J Alloys Compd 692:131–139. https://doi.org/10.1016/j.jallcom.2016.09.042

    Article  CAS  Google Scholar 

  20. Tang H, Zan L, Mao W, Tang Z (2015) Improved rate performance of amorphous carbon coated lithium zinc titanate anode material with alginic acid as carbon precursor and particle size controller. J Electroanal Chem 751:57–64

    CAS  Google Scholar 

  21. Tang H, Tang Z (2014) Effect of different carbon sources on electrochemical properties of Li2ZnTi3O8/C anode material in lithium-ion batteries. J Alloys Compd 613:267–274

    CAS  Google Scholar 

  22. Wang L, Chen B, Meng Z, Luo B, Wang X, Zhao Y (2016) High performance carbon-coated lithium zinc titanate as an anode material for lithium-ion batteries. Electrochim Acta 188:135–144

    CAS  Google Scholar 

  23. Xu Y, Hong Z, Xia L, Yang J, Wei M (2013) One step sol–gel synthesis of Li2ZnTi3O8/C nanocomposite with enhanced lithium-ion storage properties. Electrochim Acta 88:74–78

    CAS  Google Scholar 

  24. Liu T, Tang H, Liu J et al (2018) Improved electrochemical performance of Li2ZnTi3O8 using carbon materials as loose and porous agent. Electrochim Acta 259:28–35

    CAS  Google Scholar 

  25. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217

    CAS  Google Scholar 

  26. Lu G, Liu J, Huang W, Wang X, Wang F (2019) Boosting the electrochemical performance of Li4Ti5O12 through nitrogen-doped carbon coating. Appl Organomet Chem 33:e4957. https://doi.org/10.1002/aoc.4957

    Article  CAS  Google Scholar 

  27. Ren Y, Lu P, Huang X, Ding J, Wang H (2016) Synthesis and high cycle performance of Li2ZnTi3O8/C anode material promoted by asphalt as a carbon precursor. RSC Adv 6:49298–49306

    CAS  Google Scholar 

  28. Stenina I, Nikiforova P, Kulova T, Skundin A, Yaroslavtsev A (2017) Electrochemical properties of Li2ZnTi3O8/C nanomaterials. Nanotechnol Russ 12:605–612

    CAS  Google Scholar 

  29. Tang H, Chen C, Liu T, Tang Z (2019) Chitosan and chitosan oligosaccharide: advanced carbon sources are used for preparation of N-doped carbon-coated Li2ZnTi3O8 anode material. J Electroanal Chem 858:113789. https://doi.org/10.1016/j.jelechem.2019.113789

    Article  CAS  Google Scholar 

  30. Chen C, Ai C, He Y, Yang S, Wu Y (2017) High performance Li2ZnTi3O8 coated with N-doped carbon as an anode material for lithium-ion batteries. J Alloys Compd 705:438–444

    CAS  Google Scholar 

  31. Balajka J, Hines MA, DeBenedetti WJ et al (2018) High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 361:786–789

    CAS  Google Scholar 

  32. Huang M, Zhu H-L, Qi Y-X, Lun N, Bai Y-J (2019) A uniform few-layered carbon coating derived from self-assembled carboxylate monolayers capable of promoting the rate properties and durability of commercial TiO2. RSC Adv 9:36334–36342

    CAS  Google Scholar 

  33. Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochim Acta 92:197–204

    CAS  Google Scholar 

  34. Umemura K, Ueda T, Munawar SS, Kawai S (2012) Application of citric acid as natural adhesive for wood. J Appl Polym Sci 123:1991–1996

    CAS  Google Scholar 

  35. Venkatachalam N, Palanichamy M, Murugesan V (2007) Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J Mol Catal A: Chem 273:177–185

    CAS  Google Scholar 

  36. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6:534. https://doi.org/10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  37. Kim J, Ji YK, Pham-Cong D et al (2016) Individually carbon-coated and electrostatic-force-derived graphene-oxide-wrapped lithium titanium oxide nanofibers as anode material for lithium-ion batteries. Electrochim Acta 199:35–44

    CAS  Google Scholar 

  38. Martins Ferreira EH, Moutinho MVO, Stavale F et al (2010) Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys Rev B 82:125429. https://doi.org/10.1103/PhysRevB.82.125429

    Article  CAS  Google Scholar 

  39. Ng SH, Wang J, Wexler D, Chew SY, Liu HK (2007) Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem C 111:11131–11138

    CAS  Google Scholar 

  40. Rahman MM, Wang JZ, Hassan MF, Wexler D, Liu HK (2011) Amorphous carbon coated high grain boundary density dual phase Li4Ti5O12–TiO2: a nanocomposite anode material for Li-ion batteries. Adv Energy Mater 1:212–220

    CAS  Google Scholar 

  41. Wang S, Wang L, Meng Z, Xun R (2019) Design of a three-dimensional-network Li2ZnTi3O8 co-modified with graphene nanosheets and carbon nanotubes as a high performance anode material for lithium-ion batteries. J Alloys Compd 774:581–585

    CAS  Google Scholar 

  42. Wang S, Bi Y, Wang L, Meng Z, Luo B (2019) Mo-doped Li2ZnTi3O8@ graphene as a high performance anode material for lithium-ion batteries. Electrochim Acta 301:319–324

    CAS  Google Scholar 

  43. Li Z, Cui Y, Wu J, Du C, Zhang X, Tang Z (2016) Synthesis and electrochemical properties of lithium zinc titanate as an anode material for lithium ion batteries via microwave method. RSC Adv 6:39209–39215

    CAS  Google Scholar 

  44. Wang L, Meng Z, Wang H, Li X, Zhang G (2016) Effects of TiO2 starting materials on the synthesis of Li2ZnTi3O8 for lithium ion battery anode. Ceram Int 42:16872–16881

    CAS  Google Scholar 

  45. Wang G, Bradhurst D, Dou S, Liu H (1999) Spinel Li[Li1/3Ti5/3]O4 as an anode material for lithium ion batteries. J Power Sources 83:156–161

    CAS  Google Scholar 

  46. Shu J (2008) Study of the interface between Li4Ti5O12 electrodes and standard electrolyte solutions in 0.0–5.0 V. Electrochem Solid-State Lett 11:A238–A240

    CAS  Google Scholar 

  47. Lu W, Belharouak I, Liu J, Amine K (2007) Electrochemical and thermal investigation of Li4/3Ti5/3O4 spinel. J Electrochem Soc 154:A114–A118

    CAS  Google Scholar 

  48. Lindström H, Södergren S, Solbrand A et al (1997) Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem B 101:7717–7722

    Google Scholar 

  49. Lou S, Cheng X, Zhao Y et al (2017) Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34:15–25

    CAS  Google Scholar 

  50. Lim E, Jo C, Kim MS et al (2016) High-performance sodium-ion hybrid supercapacitor based on Nb2O5@ carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater 26:3711–3719

    CAS  Google Scholar 

  51. Shen L, Wang Y, Lv H et al (2018) Ultrathin Ti2Nb2O9 nanosheets with pseudocapacitive properties as superior anode for sodium-ion batteries. Adv Mater 30:1804378. https://doi.org/10.1002/adma.201804378

    Article  CAS  Google Scholar 

  52. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    CAS  Google Scholar 

  53. Zhang Y, Park S-J (2017) Au–Pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal 355:1–10. https://doi.org/10.1016/j.jcat.2017.08.007

    Article  CAS  Google Scholar 

  54. Zhang Y, Park S-J (2019) Facile construction of MoO3@ZIF-8 core–shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl Catal B 240:92–101. https://doi.org/10.1016/j.apcatb.2018.08.077

    Article  CAS  Google Scholar 

  55. Das S, Majumder S, Katiyar R (2005) Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films. J Power Sources 139:261–268

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project ZR2019MEM029 of Shandong Provincial Natural Science Foundation, PR China, and National Natural Science Foundation of China (51902189).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Lun or Yu-Jun Bai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 909 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhu, HL., Qi, YX. et al. Optimizing the cycling life and high-rate performance of Li2ZnTi3O8 by forming thin uniform carbon coating derived from citric acid. J Mater Sci 55, 15538–15550 (2020). https://doi.org/10.1007/s10853-020-04980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04980-1

Navigation