Skip to main content
Log in

Scalable and efficient extraction of two-dimensional MoS2 nanosheets from dispersions as a co-catalyst for enhancing Fenton reactions

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Here, two-dimensional molybdenum disulfide (2D-MoS2) nanosheets were efficiently extracted from dispersions by precipitation method and then directly applied as co-catalyst for enhancing Fenton reactions. The 2D-MoS2 nanosheets were completely extracted in a short time, while surfactant was left in dispersion. The average length and layer number of extracted 2D-MoS2 nanosheets are 110.41 nm and 2.6, respectively. Due to the loose structure and a small amount of adsorbed surfactant, the extracted 2D-MoS2 nanosheets exhibited excellent dispersibility in various solvents. The 2D-MoS2 nanosheets as co-catalyst promoted greatly the production rate of reactive hydroxyl radicals (·OH) and thus decreased remarkably the dosage of ferrous salts and H2O2. The co-catalytic property of 2D-MoS2 nanosheets is much better than that of commercial bulk MoS2 because 2D-MoS2 provides abundant active edge sites. This work not only demonstrated a scalable and efficient method for extracting 2D-MoS2 nanosheets from dispersions, but also widened the applications areas of 2D-MoS2 and provided an excellent co-catalyst for Fenton reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Liu X, Zhou Y, Zhang J, Luo L, Yang Y, Huang H, Peng H, Tang L, Mu Y (2018) Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: mechanism study and research gaps. Chem Eng J 347:379–397

    CAS  Google Scholar 

  2. Pi L, Cai J, Xiong L, Cui J, Hua H, Tang D, Mao X (2019) Generation of H2O2 by on-site activation of molecular dioxygen for environmental remediation applications: a review. Chem Eng J 19:123420

    Google Scholar 

  3. Zhang C, Ou Y, Lei WX, Wan LS, Ji J, Xu ZK (2016) CuSO4/H2O2-induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability. Angew Chem 55:3054–3057

    CAS  Google Scholar 

  4. Xing M, Xu W, Dong C, Bai Y, Zeng J, Yi Z, Zhang J, Yin Y (2018) Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chemistry 4:1359–1372

    CAS  Google Scholar 

  5. Liu J, Dong C, Deng Y, Ji J, Bao S, Chen C, Shen B, Zhang J, Xing M (2018) Molybdenum sulfide co-catalytic fenton reaction for rapid and efficient inactivation of escherichia coli. Water Res 145:312–320

    CAS  Google Scholar 

  6. Basu P, Chakraborty J, Ganguli N, Mukherjee K, Acharya K, Satpati B, Khamrui S, Mandal S, Banerjee D, Goswami D, Nambissan PMG, Chatterjee K (2019) Defect engineered MoS2 nanostructures for reactive oxygen species generation in the dark: antipollutant and antifungal performances. ACS Appl Energy Mater 11:48179–48191

    CAS  Google Scholar 

  7. Zhou H, Lai L, Wan Y, He Y, Yao G, Lai B (2020) Molybdenum disulfide (MoS2): a versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chem Eng J 384:123264

    CAS  Google Scholar 

  8. Nguyen CV Tuning the electronic properties and schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating. Superlattices Microstruct 116: 79–87

  9. Wang F, Wang Z, Xu K, Wang F, Wang Q, Huang Y, Yin L (2015) He JJNL (2015) Tunable GaTe-MoS2 van der waals p-n junctions with novel optoelectronic performance. Nano Lett 15:7558–7566

    CAS  Google Scholar 

  10. Xu Y, Peng Y, Tao Y, Yao L, Jian G, Dearn KD, Hu X (2018) Nano-MoS2 and graphene additives in oil for tribological applications. Nanotechnol Oil Gas Ind 8:151–191

    Google Scholar 

  11. Gomez A, Poot M, Steele GA, Zant HS, Agrait N, Materials GR (2012) Elastic properties of freely suspended MoS2 nanosheets. Adv Mater 24:772–775

    Google Scholar 

  12. Jayabal S, Saranya G, Wu J, Liu Y, Geng D, Meng XJJA (2017) Understanding high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials. J Mater Chem A 5:24540–24563

    CAS  Google Scholar 

  13. Wang X, Zhang YW, Si HN, Zhang QH, Wu J, Gao L, Wei XF, Sun Y, Liao QL, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y (2020) Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J Am Chem Soc 142:4298–4308

    CAS  Google Scholar 

  14. Liu G, Feng Y, Li Y, Qin M, An H, Hu W, Feng W (2015) Three-dimensional multilayer assemblies of MoS2/reduced graphene oxide for high-performance lithium ion batteries. Part Part Syst Charact 32:489–497

    CAS  Google Scholar 

  15. Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Sang JKJ (2014) Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Mater Res Bull 50:499–502

    CAS  Google Scholar 

  16. Yao Y, Lin Z, Li Z, Song X, Moon KS, Wong CP (2012) Large-scale production of two-dimensional nanosheets. J Mater Chem 22:13494–13499

    CAS  Google Scholar 

  17. O’Neill A, Khan U, Coleman JN (2012) Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem Mater 24:2414–2421

    Google Scholar 

  18. Guardia L, Paredes JI, Munuera JM, Villar-Rodil S, Ayán Varela M, Martínez-Alonso A, Tascón JMD (2014) Chemically exfoliated MoS2 nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. ACS Appl Mater Interfaces 6:21702–21710

    CAS  Google Scholar 

  19. Anto Jeffery A, Nethravathi C, Rajamathi M (2014) Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M = Mo, W). J Phys Chem C 118:1386–1396

    CAS  Google Scholar 

  20. Sun D, Huang D, Wang H, Xu GL, Zhang X, Zhang R, Tang Y, Abd Ei-Hady D, Alshitari W, Saad Al-Bogami A, Amine K, Shao M (2019) 1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy 61:361–369

    CAS  Google Scholar 

  21. Kim SK, Bhatia R, Kim TH, Seol D, Kim JH, Kim H, Seung W, Kim Y, Lee YH, Kim SW (2016) Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 22:483–489

    CAS  Google Scholar 

  22. Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang DS, Liu K, Ji J, Li J, Sinclair R, Wu J (2014) Tuning interlayer coupling in large-area heterostructures with CVD-Grown MoS2 and WS2 monolayers. Nano Lett 14:3185–3190

    CAS  Google Scholar 

  23. Liu N, Kim P, Kim JH, Ye JH, Kim S, Lee CJ (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902–6910

    CAS  Google Scholar 

  24. Wang G, Zhang J, Yang S, Wang F, Zhuang X, Müllen K, Feng X (2018) Vertically aligned MoS2 nanosheets patterned on electrochemically exfoliated graphene for high-performance lithium and sodium storage. Adv Energy Mater 8:1702254

    Google Scholar 

  25. Wajid AS, Das S, Irin F, Ahmed HST, Shelburne JL, Parviz D, Fullerton RJ, Jankowski AF, Hedden RC, Green MJ (2012) Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production. Carbon 50:526–534

    CAS  Google Scholar 

  26. Wang S, Ang PK, Wang Z, Tang ALL, Thong JTL, Loh KP (2010) High mobility, printable, and solution-processed graphene electronics. Nano Lett 50:92–98

    Google Scholar 

  27. Wu J, Agrawal M, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2010) Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 4:43–48

    CAS  Google Scholar 

  28. Irin F, Hansen MJ, Bari R, Parviz D, Metzler SD, Bhattacharia SK, Green MJ (2015) Adsorption and removal of graphene dispersants. J Colloid Interface Sci 446:282–289

    CAS  Google Scholar 

  29. Kang J, Sangwan VK, Wood JD, Hersam MC (2017) Solution-based processing of monodisperse two-dimensional nanomaterials. Acc Chem Res 50:943–951

    CAS  Google Scholar 

  30. Backes C, Szydłowska BM, Harvey A, Yuan S, Vega-Mayoral V, Davies BR, Pl Zhao, Hanlon D, Santos EJG, Katsnelson MI, Blau WJ, Gadermaier C, Coleman JN (2016) Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation. ACS Nano 10:1589–1601

    CAS  Google Scholar 

  31. Han C, Zhang Y, Gao P, Chen S, Liu X, Mi Y, Zhang J, Ma Y, Jiang W, Chang JJN (2017) High-yield production of MoS2 and WS2 quantum sheets from their bulk materials. Nano Lett 17:7767–7772

    CAS  Google Scholar 

  32. Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dots interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303

    CAS  Google Scholar 

  33. Ganatra R, Zhang Q (2014) Few-layer MoS2: a promising layered semiconductor. ACS Nano 8:4074–4099

    CAS  Google Scholar 

  34. Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg GS, Grunlan JC, Moriarty G (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23:3944–3948

    CAS  Google Scholar 

  35. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    CAS  Google Scholar 

  36. Bang GS, Nam KW, Kim JY, Shin J, Choi JW, Choi SY (2014) Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. ACS Appl Mater Interfaces 6:7084–7089

    CAS  Google Scholar 

  37. Luo Y, Li X, Cai X, Zou X, Kang F, Cheng HM, Liu BJ (2018) Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12: 4565-4573.`

  38. Jiménez Sandoval S, Yang D, Frindt RF, Irwin JC (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B 44:3955–3962

    Google Scholar 

  39. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4:2695–2700

    CAS  Google Scholar 

  40. Kouroupis Agalou K, Liscio A, Treossi E, Ortolani LV, Morandi NM, Pugno V (2014) Fragmentation and exfoliation of two-dimensional materials: a statistical approach. Nanoscale 6:5926–5933

    CAS  Google Scholar 

  41. Varrla E, Backes C, Paton KR, Harvey A, Gholamvand Z, Mccauley J, Coleman JN (2015) Large scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chem Mater 27:1129–1139

    CAS  Google Scholar 

  42. Li H, Wu J, Yin Z, Zhang HJ (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075

    CAS  Google Scholar 

  43. Schott H (1973) Salting in of nonionic surfactants by complexation with inorganic salts. J Colloid Interface Sci 43:150–155

    CAS  Google Scholar 

  44. Schott H, Han SK (1975) Effect of inorganic additives on solutions of nonionic surfactants II. J Pharm Sci 64:658–664

    CAS  Google Scholar 

  45. Varrla E, Paton KR, Backes C, Harvey A, Smith RJ, McCauley J, Coleman JN (2014) Turbulence assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale 6:11810–11819

    CAS  Google Scholar 

  46. Hai X, Chang K, Pang H, Li M, Li P, Liu H, Shi L, Ye JJ (2016) Engineering the edges of MoS2 (WS2) cystals for direct exfoliation into monolayers in polar micromolecular solvents. J Am Chem Soc 138:14962–14969

    CAS  Google Scholar 

  47. Yi QY, Ji JH, Shen B, Dong CC, Zhang JL, Xing MY (2019) Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ Sci Technol 53:9725–9733

    CAS  Google Scholar 

  48. Dong CC, Ji JH, Shen B, Xing MY, Zhang JL (2018) Enhancement of H2O2 decomposition by the Co-catalytic effect of WS2 on the Fenton reaction for the synchronous reduction of Cr(VI) and remediation of phenol. Environ Sci Technol 52:11297–11308

    CAS  Google Scholar 

  49. Ji JH, Aleisa RM, Duan H, Zhang JL, Yin YD, Xing MY (2020) Metallic active sites on MoO2(110) surface to catalyze advanced oxidation processes for efficient pollutant removal. Science 23:100861

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the State Key Laboratory of Organic–Inorganic Composites for providing us with the instruments. This work was supported by the National Science Foundation of China (No. 21676023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Meng or Wei Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Li, Y., Huang, X. et al. Scalable and efficient extraction of two-dimensional MoS2 nanosheets from dispersions as a co-catalyst for enhancing Fenton reactions. J Mater Sci 55, 14358–14372 (2020). https://doi.org/10.1007/s10853-020-04897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04897-9

Navigation