Skip to main content
Log in

Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high-performance supercapacitor application

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A three-dimensional (3D) fluorine-doped graphene aerogel (FGA) with rich semi-ionic C–F bonds was synthesized via a facile hydrothermal method and applied as the electrode material in supercapacitor. A porous 3D network structure with a high specific surface area of the FGA has been confirmed by the combination of scanning electron microscopy, transmission electron microscopy and N2 adsorption method. X-ray photoelectron spectroscopy spectra indicated that the FGA was doped predominantly with semi-ionic C–F bonds, which ensured the high electronic conductivity and sufficient electrochemistry active sites of FGA. As a result, the FGA electrode showed a high specific capacity of 279.8 F g−1 at a current density of 0.5 A g−1, which is much better than that of undoped graphene aerogel (UGA, 141.6 F g−1). Even though the current density increased to 10 A g−1, 90.6% of its specific capacitance was retained. The FGA also maintained about 94.3% of the initial capacitance after 5000 cycles at a current density of 0.5 A g−1. Furthermore, the assembled FGA//FGA symmetric supercapacitor presented a high energy density of 26.2 W h kg−1 at a power density of 899 W kg−1. Accordingly, this work offers a facile and efficient approach to produce fluorine-doped graphene materials for high-performance supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  CAS  Google Scholar 

  2. Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387

    Article  Google Scholar 

  3. Pham VH, Dickerson JH (2016) Reduced graphene oxide hydrogels deposited in nickel foam for supercapacitor applications: toward high volumetric capacitance. J Phys Chem C 120:5353–5360

    Article  CAS  Google Scholar 

  4. Obreja VVN (2008) On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—a review. Physica E 40:2596–2605

    Article  CAS  Google Scholar 

  5. Ju P, Zhu Z, Shao X, Wang S, Zhao C, Qian X, Zhao C (2017) 3D walnut-shaped TiO2/RGO/MoO2@Mo electrode exhibiting extraordinary supercapacitor performance. J Mater Chem A 5:18777–18785

    Article  CAS  Google Scholar 

  6. Wu J, Sun Y, Yang X, Long G, Zong Y, Li X, Zheng X (2018) Effect of graphene thickness on the morphology evolution of hierarchical NiCoO2 architectures and their superior supercapacitance performance. Ceram Int 44:4875–4882

    Article  CAS  Google Scholar 

  7. Saranya P, Selladurai S (2018) Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J Mater Sci 53:16022–16046. https://doi.org/10.1007/s10853-018-2742-1

    Article  CAS  Google Scholar 

  8. Chi YW, Hu CC, Shen HH, Huang KP (2016) New approach for high-voltage electrical double-layer capacitors using vertical graphene nanowalls with and without nitrogen doping. Nano Lett 16:5719–5727

    Article  CAS  Google Scholar 

  9. Zhang Y, Zou Q, Hsu HS, Raina S, Xu Y, Kang JB, Chen J, Deng S, Xu N, Kang WP (2016) Morphology effect of vertical graphene on the high performance of supercapacitor electrode. ACS Appl Mater Interfaces 8:7363–7369

    Article  CAS  Google Scholar 

  10. Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616

    Article  CAS  Google Scholar 

  11. Wang K, Li L, Zhang T, Liu Z (2014) Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability. Energy 70:612–617

    Article  CAS  Google Scholar 

  12. Huo J, Zheng P, Wang X, Guo S (2018) Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes. Appl Surf Sci 442:575–580

    Article  CAS  Google Scholar 

  13. Chen P, Yang C, He Z, Guo K (2019) One-pot facile route to fabricate the precursor of sulfonated graphene/N-doped mesoporous carbons composites for supercapacitors. J Mater Sci 54:4180–4191. https://doi.org/10.1007/s10853-018-3122-6

    Article  CAS  Google Scholar 

  14. Kakaei K, Hamidi M, Husseindoost S (2016) Chlorine-doped reduced graphene oxide nanosheets as an efficient and stable electrode for supercapacitor in acidic medium. J Colloid Interf Sci 479:121–126

    Article  CAS  Google Scholar 

  15. Thirumal V, Pandurangan A, Jayavel R, Ilangovan R (2016) Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications. Synth Met 220:524–532

    Article  CAS  Google Scholar 

  16. Walle MD, Zhang Z, Zhang M, You X, Li Y, Liu YN (2018) Hierarchical 3D nitrogen and phosphorous codoped graphene/carbon nanotubes–sulfur composite with synergistic effect for high performance of lithium–sulfur batteries. J Mater Sci 53:2685–2696. https://doi.org/10.1007/s10853-017-1678-1

    Article  CAS  Google Scholar 

  17. Zhang C, Mahmood N, Yin H, Liu F, Hou Y (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25:4932–4937

    Article  CAS  Google Scholar 

  18. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  19. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  20. Yan X, Yu Y, Ryu SK, Lan J, Jia X, Yang X (2014) Simple and scalable synthesis of phosphorus and nitrogen enriched porous carbons with high volumetric capacitance. Electrochim Acta 136:466–472

    Article  CAS  Google Scholar 

  21. Guérin K, Pinheiro JP, Dubois M, Fawal Z, Masin F, Yazami R, Hamwi A (2004) Synthesis and characterization of highly fluorinated graphite containing sp2 and sp3 carbon. Chem Mater 16:1786–1792

    Article  CAS  Google Scholar 

  22. Gong P, Wang Z, Li Z, Mi Y, Sun J, Niu L, Wang H, Wang J, Yang S (2013) Photochemical synthesis of fluorinated graphene via a simultaneous fluorination and reduction route. RSC Adv 3:6327–6330

    Article  CAS  Google Scholar 

  23. Giraudet J, Delabarre C, Guérin K, Dubois M, Masin F, Hamwi A (2006) Comparative performances for primary lithium batteries of some covalent and semi-covalent graphite fluorides. J Power Sources 158:1365–1372

    Article  CAS  Google Scholar 

  24. Delabarre C, Dubois M, Giraudet J, Guérin K, Hamwi A (2006) Electrochemical performance of low temperature fluorinated graphites used as cathode in primary lithium batteries. Carbon 44:2543–2548

    Article  CAS  Google Scholar 

  25. Chuanbin S, Yiyu F, Yu L, Chengqun Q, Qingqing Z, Wei F (2014) Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6:2634–2641

    Article  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  27. Wang C, Lan Y, Yu W, Li X, Qian Y, Liu H (2016) Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Appl Surf Sci 362:11–19

    Article  CAS  Google Scholar 

  28. Chen F, Huang K, Fan J, Tao D (2018) Chemical solvent in chemical solvent: A class of hybrid materials for effective capture of CO2. AlChE J 64:632–639

    Article  CAS  Google Scholar 

  29. Hui W, Zhou Y, Dong Y, Cao Z, He F, Cai M, Tao D (2019) Efficient hydrolysis of hemicellulose to furfural by novel superacid SO4H-functionalized ionic liquids. Green Energy Environ 4:49–55

    Article  Google Scholar 

  30. Jha N, Ramesh P, Bekyarova E, Itkis ME, Haddon RC (2012) High energy density supercapacitor based on a hybrid carbon nanotube–reduced graphite oxide architecture. Adv Energy Mater 2:438–444

    Article  CAS  Google Scholar 

  31. Li F, Yao W, Wang D, Fei W (2004) Characterization of single-wall carbon nanotubes by N2 adsorption. Carbon 42:2375–2383

    Article  CAS  Google Scholar 

  32. Chen Y, Li Y, Yao F, Peng C, Cao C, Feng Y, Feng W (2019) Nitrogen and fluorine co-doped holey graphene hydrogel as a binder-free electrode material for flexible solid-state supercapacitors. Sustain Energ Fuels 3:2237–2245

    Article  CAS  Google Scholar 

  33. Sun C, Feng Y, Li Y, Qin C, Zhang Q, Feng W (2014) Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale 6:2634–2641

    Article  CAS  Google Scholar 

  34. Fulvio PF, Brown SS, Adcock J, Mayes RT, Guo B, Sun XG, Mahurin SM, Veith GM, Dai S (2011) Low-temperature fluorination of soft-templated mesoporous carbons for a high-power lithium/carbon fluoride battery. Chem Mater 23:4420–4427

    Article  CAS  Google Scholar 

  35. Down MP, Rowley-Neale SJ, Smith GC, Banks CE (2018) Fabrication of graphene oxide supercapacitor devices. ACS Appl Energy Mater 1:707–714

    Article  CAS  Google Scholar 

  36. Zhang L, Yang H, Wanigarathna DKJA, Liu B (2018) Ultrasmall transition metal carbide nanoparticles encapsulated in N S-doped graphene for all-pH hydrogen evolution. Small Methods 2:1700353–1700360

    Article  CAS  Google Scholar 

  37. Feng W, Long P, Feng Y, Li Y (2016) Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv Sci 3:1500413–1500435

    Article  CAS  Google Scholar 

  38. An H, Li Y, Feng Y, Cao Y, Cao C, Long P, Li S, Feng W (2018) Reduced graphene oxide doped predominantly with CF2 groups as a superior anode material for long-life lithium-ion batteries. Chem Commun 54:2727–2730

    Article  CAS  Google Scholar 

  39. Long P, Feng Y, Li Y, Cao C, Li S, An H, Qin C, Han J, Feng W (2017) Solid-state fluorescence of fluorine-modified carbon nanodots aggregates triggered by poly(ethylene glycol). ACS Appl Mater Inter 9:37981–37990

    Article  CAS  Google Scholar 

  40. An H, Yu L, Peng L, Yi G, Qin C, Chen C, Feng Y, Wei F (2016) Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J Power Sources 312:146–155

    Article  CAS  Google Scholar 

  41. Sato Y, Itoh K, Hagiwara R, Fukunaga T, Ito Y (2004) On the so-called “semi-ionic” C–F bond character in fluorine–GIC. Carbon 42:3243–3249

    Article  CAS  Google Scholar 

  42. Jia Z, Jia Z, Wang B, Wang B, Wang Y, Wang Y, Qi T, Qi T, Liu Y, Liu Y (2016) Hierarchical porous nitrogen doped reduced graphene oxide prepared by surface decoration-thermal treatment method as high-activity oxygen reduction reaction catalyst and high-performance supercapacitor electrodes. RSC Adv 6:49497–49504

    Article  CAS  Google Scholar 

  43. Wen Y, Wang B, Huang C, Wang L, Hulicova-Jurcakova D (2015) Synthesis of phosphorus-doped graphene and its wide potential window in aqueous supercapacitors. Chem A Eur J 21:80–85

    Article  CAS  Google Scholar 

  44. Yu X, Park HS (2014) Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon 77:59–65

    Article  CAS  Google Scholar 

  45. Jiang B, Tian C, Wang L, Sun L, Chen C, Nong X, Qiao Y, Fu H (2012) Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction. Appl Surf Sci 258:3438–3443

    Article  CAS  Google Scholar 

  46. Xing LB, Hou SF, Zhou J, Zhang JL, Si W, Dong Y, Zhuo S (2015) Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption. J Solid State Chem 230:224–232

    Article  CAS  Google Scholar 

  47. Lee JSM, Briggs ME, Hu CC, Cooper AI (2018) Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46:277–289

    Article  CAS  Google Scholar 

  48. Wan L, Li X, Li N, Xie M, Du C, Zhang Y, Chen J (2019) Multi-heteroatom-doped hierarchical porous carbon derived from chestnut shell with superior performance in supercapacitors. J Alloy Compd 790:760–771

    Article  CAS  Google Scholar 

  49. Liu S, Zhao Y, Zhang B, Xia H, Zhou J, Xie W, Li H (2018) Nano-micro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes. J Power Sources 381:116–126

    Article  CAS  Google Scholar 

  50. Lei S, Chen L, Zhou W, Deng P, Liu Y, Fei L, Lu W, Xiao Y, Cheng B (2018) Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. J Power Sources 379:74–83

    Article  CAS  Google Scholar 

  51. Su Y, Yao Z, Zhang F, Wang H, Mics Z, Cánovas E, Bonn M, Zhuang X, Feng X (2016) Sulfur-enriched conjugated polymer nanosheet derived sulfur and nitrogen co-doped porous carbon nanosheets as electrocatalysts for oxygen reduction reaction and zinc-air battery. Adv Funct Mater 26:5893–5902

    Article  CAS  Google Scholar 

  52. Zhou W, Lei S, Sun S, Ou X, Fu Q, Xu Y, Xiao Y, Cheng B (2018) From weed to multi-heteroatom-doped honeycomb-like porous carbon for advanced supercapacitors: A gelatinization-controlled one-step carbonization. J Power Sources 402:203–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support by Foundation of Jiangxi Educational Committee (GJJ170427, GJJ170437), the NSF of Jiangxi (20181BAB203012), Foundation of East China University of Technology under Grant No. DHBK2016110 and the Innovation Fund Designated for Graduate Students of East China University of Technology (DHYC-201914).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Qian or Limin Lu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Chen, J., Wang, C. et al. Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high-performance supercapacitor application. J Mater Sci 55, 12103–12113 (2020). https://doi.org/10.1007/s10853-020-04821-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04821-1

Navigation