Skip to main content
Log in

TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rapid and sensitive detection of glucose concentrations is very important for human health. Herein, an ultrasensitive photoelectrochemical dual-electron-acceptor biosensor was constructed by modifying the TiO2 nanotubes (NTs) with polydopamine (PDA) and amino-functionalized graphene quantum dots (N-GQDs)/GOx. PDA is grown on the top of the TiO2 NTs by the electropolymerization, and N-GQDs are loaded into the inner of the TiO2 NTs by a microwave-assisted method. The TiO2 NTs/PDA/N-GQD dual-electron-acceptor biosensor exhibited a highly enhanced photoelectric response, excellent electron–hole separation efficiency, low detection limit (0.015 mM), wide linear range (0–11 mM) and ultrahigh sensitivity (13.6 µA mM−1 cm−2). The prepared biosensor reflected high selectivity and excellent stability. This work also provides new insights into other optoelectronic biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Gratzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    CAS  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    CAS  Google Scholar 

  3. Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320

    CAS  Google Scholar 

  4. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    CAS  Google Scholar 

  5. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    CAS  Google Scholar 

  6. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed 49:2114–2138

    CAS  Google Scholar 

  7. Sljukic B, Banks CE, Compton RG (2006) Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. Nano Lett 6:1556–1558

    CAS  Google Scholar 

  8. Minteer SD, Atanassov P, Luckarift HR, Johnson GR (2012) New materials for biological fuel cells. Mater Today 15:166–173

    CAS  Google Scholar 

  9. Lee D, Lee J, Kim J, Na HB, Kim B, Shin CH, Kwak JH, Dohnalkova A, Grate JW, Hyeon T, Kim HS (2005) Simple fabrication of a highly sensitive and fast glucose biosensor using enzymes immobilized in mesocellular carbon foam. Adv Mater 17:2828–2833

    CAS  Google Scholar 

  10. Dai H, Zhang S, Gong L, Li Y, Xu G, Lin Y, Hong Z (2015) The photoelectrochemical exploration of multifunctional TiO2 mesocrystals and its enzyme-assisted biosensing application. Biosens Bioelectron 72:18–24

    CAS  Google Scholar 

  11. Noell T, Noell G (2011) Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology. Chem Soc Rev 40:3564–3576

    CAS  Google Scholar 

  12. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    CAS  Google Scholar 

  13. Pan D, Xi C, Li Z, Wang L, Chen Z, Luc B, Wu M (2013) Electrophoretic fabrication of highly robust, efficient, and benign heterojunction photoelectrocatalysts based on graphene-quantum-dot sensitized TiO2 nanotube arrays. J Mater Chem A 1:3551–3555

    CAS  Google Scholar 

  14. Zhang W, Xu T, Liu Z, Wu N-L, Wei M (2018) Hierarchical TiO2−x imbedded with graphene quantum dots for high-performance lithium storage. Chem Commun 54:1413–1416

    CAS  Google Scholar 

  15. Mao W-X, Lin X-J, Zhang W, Chi Z-X, Lyu R-W, Cao A-M, Wan L-J (2016) Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis. Chem Commun 52:7122–7125

    CAS  Google Scholar 

  16. Zhao W-W, Xu J-J, Chen H-Y (2015) Photoelectrochemical bioanalysis: the state of the art. Chem Soc Rev 44:729–741

    CAS  Google Scholar 

  17. Sun B, Zhou W, Li H, Ren L, Qiao P, Li W, Fu H (2018) Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv Mater. https://doi.org/10.1002/adma.201804282

    Article  Google Scholar 

  18. Lee SY, Lim SY, Seo D, Lee J-Y, Chung TD (2016) Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv Energy Mater. https://doi.org/10.1002/aenm.201502207

    Article  Google Scholar 

  19. Aguilar LE, Tumurbaatar B, Ghavaminejad A, Park CH, Kim CS (2017) Functionalized non-vascular nitinol stent via electropolymerized polydopamine thin film coating loaded with bortezomib adjunct to hyperthermia therapy. Sci Rep. https://doi.org/10.1038/s41598-017-08833-x

    Article  Google Scholar 

  20. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science (New York, NY) 318:426–430

    CAS  Google Scholar 

  21. Yan Y, Chen J, Li N, Tian J, Li K, Jiang J, Liu J, Tian Q, Chen P (2018) Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction. ACS Nano 12:3523–3532

    CAS  Google Scholar 

  22. Qian Y, Yuan Y, Wang H, Liu H, Zhang J, Shi S, Guo Z, Wang N (2018) Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J Mater Chem A 6:24676–24685

    CAS  Google Scholar 

  23. Reuillard B, Le Goff A, Holzinger M, Cosnier S (2014) Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. J Mater Chem B 2:2228–2232

    CAS  Google Scholar 

  24. Deng X, Zhang H, Guo R, Cui Y, Ma Q, Zhang X, Cheng X, Li B, Xie M, Cheng Q (2018) Effect of fabricating parameters on photoelectrocatalytic performance of CeO2/TiO2 nanotube arrays photoelectrode. Sep Purif Technol 193:264–273

    CAS  Google Scholar 

  25. Kim S, Moon G-h, Kim G, Kang U, Park H, Choi W (2017) TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants. J Catal 346:92–100

    CAS  Google Scholar 

  26. Gnanasekaran L, Hemamalini R, Ravichandran K (2015) Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J Saudi Chem Soc 19:589–594

    Google Scholar 

  27. Atchudan R, Edison TNJI, Perumal S, Vinodh R, Lee YR (2018) In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants. J Alloys Compd 766:12–24

    CAS  Google Scholar 

  28. Han Z, Tang Z, Shen S, Zhao B, Zheng G, Yang J (2014) Strengthening of graphene aerogels with tunable density and high adsorption capacity towards Pb2+. Sci Rep. https://doi.org/10.1038/srep05025

    Article  Google Scholar 

  29. Liu H, Xi P, Xie G, Shi Y, Hou F, Huang L, Chen F, Zeng Z, Shao C, Wang J (2012) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341

    CAS  Google Scholar 

  30. Zhang R, Chen W (2014) Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off' fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 55:83–90

    CAS  Google Scholar 

  31. Olivares O, Likhanova N, Gomez B, Navarrete J, Llanos-Serrano M, Arce E, Hallen JJASS (2006) Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment. Appl Surf Sci 252:2894–2909

    CAS  Google Scholar 

  32. Yang H, Zhang X (2009) Synthesis, characterization and computational simulation of visible-light irradiated fluorine-doped titanium oxide thin films. J Mater Chem 19:6907–6914

    CAS  Google Scholar 

  33. Ding H, Wei J-S, Xiong H-M (2014) Nitrogen and sulfur co-doped carbon dots with strong blue luminescence. Nanoscale 6:13817–13823

    CAS  Google Scholar 

  34. Campos BB, Abellan C, Zougagh M, Jimenez-Jimenez J, Rodriguez-Castellon E, Esteves da Silva JCG, Rios A, Algarra M (2015) Fluorescent chemosensor for pyridine based on N-doped carbon dots. J Colloid Interface Sci 458:209–216

    CAS  Google Scholar 

  35. Li H, Kong W, Liu J, Liu N, Huang H, Liu Y, Kang Z (2015) Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon 91:66–75

    CAS  Google Scholar 

  36. Nurunnabi M, Khatun Z, Nafiujjaman M, Lee D-g, Lee Y-k (2013) Surface coating of graphene quantum dots using mussel-inspired polydopamine for biomedical optical imaging. ACS Appl Mater Interfaces 5:8246–8253

    CAS  Google Scholar 

  37. Zhang R, Bao J, Pan Y, Sun C-F (2019) Highly reversible potassium-ion intercalation in tungsten disulfide. Chem Sci 10:2604–2612

    CAS  Google Scholar 

  38. Cai J, Huang J, Ge M, Iocozzia J, Lin Z, Zhang K-Q, Lai Y (2017) Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small. https://doi.org/10.1002/smll.201604240

    Article  Google Scholar 

  39. Nassef HM, Civit L, Fragoso A, O'Sullivan CK (2009) Amperometric immunosensor for detection of celiac disease toxic gliadin based on fab fragments. Anal Chem 81:5299–5307

    CAS  Google Scholar 

  40. Zhang J-J, Kang T-F, Hao Y-C, Lu L-P, Cheng S-Y (2015) Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR. Sensor Actuat B Chem 214:117–123

    CAS  Google Scholar 

  41. Muthuchamy N, Atchudan R, Edison TNJI, Perumal S, Lee YR (2018) High-performance glucose biosensor based on green synthesized zinc oxide nanoparticle embedded nitrogen-doped carbon sheet. J Electroanal Chem 816:195–204

    CAS  Google Scholar 

  42. Komathi S, Gopalan AI, Muthuchamy N, Lee KP (2017) Polyaniline nanoflowers grafted onto nanodiamonds via a soft template- guided secondary nucleation process for high-performance glucose sensing. RSC Adv 7:15342–15351

    CAS  Google Scholar 

  43. Zhang L, Ruan Y-F, Liang Y-Y, Zhao W-W, Yu X-D, Xu J-J, Cheng H-Y (2018) Bismuth oxyiodide couples with glucose oxidase: a special synergized dual-catalysis mechanism for photoelectrochemical enzymatic bioanalysis. ACS Appl Mater Interfaces 10:3372–3379

    CAS  Google Scholar 

  44. Shang M, Qi H, Du C, Huang H, Wu S, Zhang J, Song W (2018) One-step electrodeposition of high-quality amorphous molybdenum sulfide/RGO photoanode for visible-light sensitive photoelectrochemical biosensing. Sensor Actuat B Chem 266:71–79

    CAS  Google Scholar 

  45. Wang Y, Bai L, Wang Y, Qin D, Shan D, Lu X (2018) Ternary nanocomposites of Au/CuS/TiO2 for an ultrasensitive photoelectrochemical non-enzymatic glucose sensor. Analyst 143:1699–1704

    CAS  Google Scholar 

  46. Liu X, Huo X, Liu P, Tang Y, Xu J, Liu X, Zhou Y (2017) Assembly of MoS2 nanosheet-TiO2 nanorod heterostructure as sensor scaffold for photoelectrochemical biosensing. Electrochim Acta 242:327–336

    CAS  Google Scholar 

  47. Ryu GM, Lee M, Choi DS, Park CB (2015) A hematite-based photoelectrochemical platform for visible light-induced biosensing. J Mater Chem B 3:4483–4486

    CAS  Google Scholar 

  48. Wu S, Huang H, Shang M, Du C, Wu Y, Song W (2017) High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. Biosens Bioelectron 92:646–653

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Key Research and Development Project of Hainan Province (No. ZDYF2018106), National Natural Science Foundation of China (Nos. 51762012, and 51862006) and Key Laboratory Open Project Fund of Hainan University (2018008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchun Tu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Xu, W., Zhang, N. et al. TiO2 nanotubes modified with polydopamine and graphene quantum dots as a photochemical biosensor for the ultrasensitive detection of glucose. J Mater Sci 55, 6105–6117 (2020). https://doi.org/10.1007/s10853-020-04422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04422-y

Navigation