Skip to main content

Advertisement

Log in

Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Agro-waste-derived porous carbon has received more attention as electrode material for high-performance supercapacitor application due to its diversity and reproducibility. Herein, hierarchical porous carbon was successfully synthesized from most abundant biomass onion peel via double crucible method and it was explored as renewable carbon source for low-cost energy storage device. The supercapacitor electrode exhibits high specific capacitance of 127 Fg−1 at the current density of 0.75 Ag−1 with capacitance retention of 109% after 2000 cycles in three-electrode system. More importantly, its symmetric supercapacitor device exhibits energy density of 13.61 Wh kg−1 at the power density of 200.8 W kg−1 with remarkable electrochemical stability revealing capacitance retention above 100% over 14000 cycles. Our study demonstrates that onion peel-derived carbon is suitable for future low-cost energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dubal DP et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

    CAS  Google Scholar 

  2. Gogotsi PSAY (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Google Scholar 

  3. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors.pdf. Electrochim Acta 45:2483–2498

    CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    CAS  Google Scholar 

  5. Qian W et al (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386

    CAS  Google Scholar 

  6. Xia X et al (2013) One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. Electrochim Acta 99:253–261

    CAS  Google Scholar 

  7. Wang H, Gao Q, Jiang L (2011) Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7(17):2454–2459

    CAS  Google Scholar 

  8. Wu Z-S et al (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    CAS  Google Scholar 

  9. Wang J-G et al (2012) Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J Power Sources 204:236–243

    CAS  Google Scholar 

  10. Li F et al (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A 3(15):7855–7861

    CAS  Google Scholar 

  11. Huang M et al (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43

    CAS  Google Scholar 

  12. Huang M et al (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3(43):21380–21423

    CAS  Google Scholar 

  13. Ji J et al (2015) In situ activation of nitrogen-doped graphene anchored on graphite foam for a high-capacity anode. ACS Nano 9(8):8609–8616

    CAS  Google Scholar 

  14. Wu G et al (2017) High-performance supercapacitors based on electrochemical-induced vertical-aligned carbon nanotubes and polyaniline nanocomposite electrodes. Sci Rep 7:43676

    Google Scholar 

  15. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes: a review. J Mater 2(1):37–54

    Google Scholar 

  16. Daraghmeh A et al (2017) A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study. Nanoscale Res Lett 12:639

    Google Scholar 

  17. Biswal M et al (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci 6(4):1249–1259

    CAS  Google Scholar 

  18. Ahmed S, Ahmed A, Rafat M (2018) Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. J Saudi Chem Soc 22(8):993–1002

    CAS  Google Scholar 

  19. Chen X et al (2017) A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Sci Rep 7:7362

    Google Scholar 

  20. Zequine C et al (2016) High performance and flexible supercapacitors based on carbonized bamboo fibers for wide temperature applications. Sci Rep 6:31704

    CAS  Google Scholar 

  21. Yang C-S, Jang YS, Jeong HK (2014) Bamboo-based activated carbon for supercapacitor applications. Curr Appl Phys 14(12):1616–1620

    Google Scholar 

  22. Zhang G et al (2018) Activated biomass carbon made from bamboo as electrode material for supercapacitors. Mater Res Bull 102:391–398

    CAS  Google Scholar 

  23. Yu X et al (2017) Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Sci Rep 7:45378

    CAS  Google Scholar 

  24. Zequine C et al (2017) High-performance flexible supercapacitors obtained via recycled jute: bio-waste to energy storage approach. Sci Rep 7:1174

    Google Scholar 

  25. Jain A, Tripathi SK (2015) Nano-porous activated carbon from sugarcane waste for supercapacitor application. J Energy Storage 4:121–127

    Google Scholar 

  26. Sanchez-Sanchez A et al (2016) Sugarcane molasses as a pseudocapacitive materials for supercapacitors. RSC Adv 6(91):88826–88836

    CAS  Google Scholar 

  27. Wahid M et al (2014) Enhanced capacitance retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal pretreatment. Energy Fuels 28(6):4233–4240

    CAS  Google Scholar 

  28. Wang K et al (2016) Bio-inspired hollow activated carbon microtubes derived from willow catkins for supercapacitors with high volumetric performance. Mater Lett 174:249–252

    CAS  Google Scholar 

  29. Wang K et al (2017) High capacitive performance of hollow activated carbon fibers derived from willow catkins. Appl Surf Sci 394:569–577

    CAS  Google Scholar 

  30. Xie L et al (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A 4(5):1637–1646

    CAS  Google Scholar 

  31. Wang K et al (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1–11

    CAS  Google Scholar 

  32. Liang Q et al (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22):13831–13837

    CAS  Google Scholar 

  33. Li J et al (2017) Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl Surf Sci 416:918–924

    CAS  Google Scholar 

  34. Fu G et al (2018) Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J Mater Sci Mater Electron 29(9):7707–7717

    CAS  Google Scholar 

  35. Purkait T et al (2017) Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep 7:15239

    Google Scholar 

  36. Sun K, Guo D, Zheng X, Zhu Y, Zheng Y, Ma M, Zhao G, Ma G (2016) Nitrogen-doped porous carbon derived from rapeseed residues for high-performance supercapacitors. Int J Electrochem Sci 11:4743–4754

    CAS  Google Scholar 

  37. Sudaryanto Y et al (2006) High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour Technol 97(5):734–739

    CAS  Google Scholar 

  38. Wang Y-Y et al (2016) Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors. Chem Sel 1(7):1441–1447

    CAS  Google Scholar 

  39. Wang D et al (2016) From trash to treasure: direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high-performance supercapacitors in organic electrolyte. Electrochim Acta 216:405–411

    CAS  Google Scholar 

  40. Ranaweera CK et al (2017) Orange-peel-derived carbon: designing sustainable and high-performance supercapacitor electrodes. C 3(4):1–17

    Google Scholar 

  41. Xiang C et al (2013) A reduced graphene oxide/Co3O4 composite for supercapacitor electrode. J Power Sources 226:65–70

    CAS  Google Scholar 

  42. Karnan M et al (2016) Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl Mater Interfaces 8(51):35191–35202

    CAS  Google Scholar 

  43. Foo KY, Hameed BH (2011) Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination 275(1–3):302–305

    CAS  Google Scholar 

  44. Zhang L, Chen K, Peng L (2017) Comparative research about wheat straw lignin from the black liquor after soda-oxygen and soda-AQ pulping: structural changes and pyrolysis behavior. Energy Fuels 31(10):10916–10923

    CAS  Google Scholar 

  45. Arrais A, Diana E, Boccaleri E (2006) A study on the carbon soot derived from the wood combustion and on the relative alkali-extractable fraction. J Mater Sci 41(18):6035–6045. https://doi.org/10.1007/s10853-006-0511-z

    Article  CAS  Google Scholar 

  46. Feng W et al (2016) Oxygen-doped activated carbons derived from three kinds of biomass: preparation, characterization and performance as electrode materials for supercapacitors. RSC Adv 6(7):5949–5956

    CAS  Google Scholar 

  47. Ganesan A, Shaijumon MM (2016) Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater 220:21–27

    CAS  Google Scholar 

  48. Köseoğlu E, Akmil-Başar C (2015) Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv Powder Technol 26(3):811–818

    Google Scholar 

  49. Qu WH et al (2015) Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour Technol 189:285–291

    CAS  Google Scholar 

  50. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150(3):A292–A300

    CAS  Google Scholar 

  51. Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid-State Lett 10(11):A250–A254

    CAS  Google Scholar 

  52. Talapaneni SN et al (2012) Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. J Mater Chem 22(19):9831–9840

    CAS  Google Scholar 

  53. Mao L, Chan HSO, Wu J (2012) Cetyltrimethylammonium bromide intercalated graphene/polypyrrole nanowire composites for high performance supercapacitor electrode. RSC Adv 2(28):10610–10617

    CAS  Google Scholar 

  54. Chang J et al (2015) Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes. Electrochim Acta 157:290–298

    CAS  Google Scholar 

  55. Xie K et al (2011) Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. Nanoscale 3(5):2202–2207

    CAS  Google Scholar 

  56. Huang Y et al (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. ACS Appl Mater Interfaces 8(24):15205–15215

    CAS  Google Scholar 

  57. Teo EYL et al (2016) High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim Acta 192:110–119

    CAS  Google Scholar 

  58. Taer E et al (2011) Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitor. Int J Electrochem Sci 2011(6):3301–3315

    Google Scholar 

  59. Farma R et al (2013) Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour Technol 132:254–261

    CAS  Google Scholar 

  60. Hu Z et al (2015) N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. J Mater Sci 51(5):2627–2633. https://doi.org/10.1007/s10853-015-9576-x

    Article  CAS  Google Scholar 

  61. Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sources 158(2):1523–1532

    CAS  Google Scholar 

  62. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351

    CAS  Google Scholar 

  63. Portet C et al (2005) Influence of carbon nanotubes addition on carbon–carbon supercapacitor performances in organic electrolyte. J Power Sources 139(1–2):371–378

    CAS  Google Scholar 

  64. Jain A, Tripathi SK (2014) Almond shell-based activated nanoporous carbon electrode for EDLCs. Ionics 21(5):1391–1398

    Google Scholar 

  65. Pech D et al (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654

    CAS  Google Scholar 

  66. Portet C et al (2005) High power density electrodes for carbon supercapacitor applications. Electrochim Acta 50(20):4174–4181

    CAS  Google Scholar 

  67. Senthilkumar ST et al (2013) High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon. ACS Appl Mater Interfaces 5(21):10541–10550

    CAS  Google Scholar 

  68. Du X et al (2013) Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications. Bioresour Technol 149:31–37

    CAS  Google Scholar 

  69. Saha D et al (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910

    CAS  Google Scholar 

  70. Gao X et al (2014) Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim Acta 133:459–466

    CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Specialized Research Fund of University Research Project Scheme by RTM Nagpur University, Nagpur (Sanction No. RTMNU/Dev/1345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Dhoble.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehare, M.D., Deshmukh, A.D. & Dhoble, S.J. Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J Mater Sci 55, 4213–4224 (2020). https://doi.org/10.1007/s10853-019-04236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04236-7

Navigation