Skip to main content
Log in

Effects of praseodymium doping on the electrical properties and aging effect of InZnO thin-film transistor

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Amorphous indium gallium zinc oxide is a popular semiconductor candidate for amorphous oxide semiconductor thin-film transistors in the field of flat-panel display. However, the existence of gallium component restricts the enhancement of mobility dramatically. In this study, we report a new praseodymium (Pr) dopant as a stabilizer in amorphous indium zinc oxide semiconductor (IZO) with high mobility and stability. Meanwhile, the PrIZO TFTs were fabricated to investigate the effects of Pr on electrical properties, stability and aging effect. The optimal PrIZO TFT exhibited a desired performance with a saturation mobility (μsat) of 25.8/32.6 cm2 V−1 s−1, an Ion/Ioff ratio of 3.5 × 107/5.4 × 107, a subthreshold swing value of 0.14/0.13 V dec−1 and a threshold voltage (Vth) of 2.9/2.1 V, respectively, before and after an air environment storage period of 90 days without passivation layer, which exhibits lower sensitivity of the channel region to oxygen/moisture from the atmosphere than IZO TFT. XRD analysis revealed that the Pr dopant had no effect on the amorphous state of IZO thin film with annealing up to 400 °C. XPS analyses suggested that the fraction of oxygen vacancy subpeak decreased significantly with Pr incorporated into IZO. The μ-PCD decay analyzation and the subgap density of states indicate that acceptor-like trap states induced by Pr ions lead to the suppression of ambient-induced excess carrier in conduction band. This work is anticipated to provide a kind of reliable stabilizer for amorphous oxide semiconductor without deteriorating mobility significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432:488–492

    Article  CAS  Google Scholar 

  2. Du Ahn B, Jeon H-J, Sheng J, Park J, Park J-S (2015) A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol 30:64001

    Article  Google Scholar 

  3. Kamiya T, Nomura K, Hosono H (2010) Present status of amorphous In–Ga–Zn–O thin-film transistors. Sci Technol Adv Mater 11:44305

    Article  Google Scholar 

  4. Park JS, Maeng WJ, Kim HS, Park JS (2012) Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520:1679–1693

    Article  CAS  Google Scholar 

  5. Oh S, Seob Yang B, Jang Kim Y, Sook OhM, Jang M, Yang H, Kyeong Jeong J, Seong Hwang C et al (2012) Anomalous behavior of negative bias illumination stress instability in an indium zinc oxide transistor: a cation combinatorial approach. Appl Phys Lett 101:92107

    Article  Google Scholar 

  6. Lee S, Ghaffarzadeh K, Nathan A, Robertson J, Jeon S, Kim C, Song IH, Chung UI (2011) Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Appl Phys Lett 98:203508

    Article  Google Scholar 

  7. Jeong S, Ha YG, Moon J, Facchetti A, Marks TJ (2010) Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv Mater 22:1346–1350

    Article  CAS  Google Scholar 

  8. Iwasaki T, Itagaki N, Den T, Kumomi H, Nomura K, Kamiya T, Hosono H (2007) Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: an application to amorphous oxide semiconductors in In–Ga–Zn–O system. Appl Phys Lett 90:242114

    Article  Google Scholar 

  9. Mitoma N, Aikawa S, Gao X, Kizu T, Shimizu M, Lin MF, Nabatame T, Tsukagoshi K (2014) Stable amorphous In2O3-based thin-film transistors by incorporating SiO2 to suppress oxygen vacancies. Appl Phys Lett 104:102103

    Article  Google Scholar 

  10. Lee Y, Lee CH, Nam T, Lee S, Oh IK, Yang JY, Choi DW, Yoo C et al (2019) Hydrogen barrier performance of sputtered La2O3 films for InGaZnO thin-film transistor. J Mater Sci 54:11145–11156. https://doi.org/10.1007/s10853-019-03685-4

    Article  CAS  Google Scholar 

  11. Lee M, Il T, Cho J, Lee W, Myoung J (2015) Improved bias stress stability of In–Ga–Zn–O thin film transistors by UV—ozone treatments of channel/dielectric interfaces. Mater Sci Semicond Process 30:469–475

    Article  CAS  Google Scholar 

  12. Aikawa S, Darmawan P, Yanagisawa K, Nabatame T, Abe Y, Tsukagoshi K (2013) Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor. Appl Phys Lett 102:102101

    Article  Google Scholar 

  13. Liu L, Fan H, Fang L, Dammak H, Pham-Thi M (2012) Dielectric characteristic of nanocrystalline Na0.5K0.5NbO3 ceramic green body. J Electroceram 28:144–148

    Article  CAS  Google Scholar 

  14. Liu L, Wu M, Yang Z, Fan H, Fang L (2012) Dielectric relaxation of NKN–BNT porous green body. Procedia Eng 27:793–798

    Article  CAS  Google Scholar 

  15. Chong E, Chun YS, Lee SY (2010) Amorphous silicon-indium-zinc oxide semiconductor thin film transistors processed below 150 C. Appl Phys Lett 97:102102

    Article  Google Scholar 

  16. Kim C-J, Kim S, Lee J-H, Park J-S, Kim S, Park J, Lee E, Lee J et al (2009) Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Appl Phys Lett 95:252103

    Article  Google Scholar 

  17. Park H-W, Kim B-K, Park J-S, Chung K-B (2013) Device performance and bias instability of Ta doped InZnO thin film transistor as a function of process pressure. Appl Phys Lett 102:102102

    Article  Google Scholar 

  18. Park JS, Kim K, Park YG, Mo YG, Kim HD, Jeong JK (2009) Novel ZrInZnO thin-film transistor with excellent stability. Adv Mater 21:329–333

    Article  CAS  Google Scholar 

  19. Aikawa S, Nabatame T, Tsukagoshi K (2013) Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications. Appl Phys Lett 103:172105

    Article  Google Scholar 

  20. Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H (2006) Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap 45:4303–4308

    Article  CAS  Google Scholar 

  21. Jeon S, Hwang H (2003) Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides (Pr2O3, Sm2O3, Gd2O3, and Dy2O3). J Appl Phys 93:6393–6395

    Article  CAS  Google Scholar 

  22. Corsino DC, Bermundo JPS, Fujii MN, Takahashi K, Ishikawa Y, Uraoka Y (2018) Dimethylaluminum hydride for atomic layer deposition of Al2O3 passivation for amorphous InGaZnO thin-film transistors. Appl Phys Express 11:61103

    Article  Google Scholar 

  23. Lu K, Yao R, Hu S, Liu X, Wei J, Wu W, Ning H, Xu M et al (2018) High-performance and flexible neodymium-doped oxide semiconductor thin-film transistors with copper alloy bottom-gate electrode. IEEE Electron Device Lett 39:839–842

    Article  CAS  Google Scholar 

  24. Li M, Zhang W, Chen W, Li M, Wu W, Xu H, Zou J, Tao H et al (2018) Improving thermal stability of solution-processed indium zinc oxide thin-film transistors by praseodymium oxide doping. ACS Appl Mater Interfaces 10:28764–28771

    Article  CAS  Google Scholar 

  25. Xu H, Xu M, Li M, Chen Z, Zou J, Wu W, Qiao X, Tao H et al (2019) Trap-assisted enhanced bias illumination stability of oxide thin film transistor by praseodymium doping. ACS Appl Mater Interfaces 11:5232–5239

    Article  CAS  Google Scholar 

  26. Luo Y-R (2007) Comprehensive handbook of chemical bond energies. CRC Press, Boca Raton

    Book  Google Scholar 

  27. Lin Z, Lan L, Xiao P, Sun S, Li Y, Song W, Gao P, Wang L et al (2015) High-mobility thin film transistors with neodymium-substituted indium oxide active layer. Appl Phys Lett 107:112108

    Article  Google Scholar 

  28. Wu WJ, Le Chen C, Hu X, Xia XH, Zhou L, Xu M, Wang L, Peng JB (2016) Analytical extraction method for density of states in metal oxide thin-film transistors by using low-frequency capacitance-voltage characteristics. J Disp Technol 12:888–891

    Article  CAS  Google Scholar 

  29. Gonçalves G, Elangovan E, Barquinha P, Pereira L, Martins R, Fortunato E (2007) Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films. Thin Solid Films 515:8562–8566

    Article  Google Scholar 

  30. Xu W, Wang H, Ye L, Xu J (2014) The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. J Mater Chem C 2:5389–5396

    Article  CAS  Google Scholar 

  31. Liu L, Fang L, Huang Y, Li Y, Shi D, Zheng S, Wu S, Hu C (2011) Dielectric and nonlinear current-voltage characteristics of rare-earth doped CaCu3Ti4O12 ceramics. J Appl Phys 110:094101

    Article  Google Scholar 

  32. Liu L, Huang Y, Li Y, Shi D, Zheng S, Wu S, Fang L, Hu C (2012) Dielectric and non-Ohmic properties of CaCu3Ti4O12 ceramics modified with NiO, SnO2, SiO2, and Al2O3 additives. J Mater Sci 47:2294–2299. https://doi.org/10.1007/s10853-011-6043-1

    Article  CAS  Google Scholar 

  33. Cong Y, Han D, Dong J, Zhang S, Zhang X, Wang Y (2017) Fully transparent high performance thin film transistors with bilayer ITO/Al–Sn–Zn–O channel structures fabricated on glass substrate. Sci Rep 7:1–6

    Article  Google Scholar 

  34. Yasuno S, Kugimiya T, Morita S, Miki A, Ojima F, Sumie S (2011) Correlation of photoconductivity response of amorphous In–Ga–Zn–O films with transistor performance using microwave photoconductivity decay method. Appl Phys Lett 98:102107

    Article  Google Scholar 

  35. Yasuno S, Kita T, Morita S, Kugimiya T, Hayashi K, Sumie S (2012) Transient photoconductivity responses in amorphous In–Ga–Zn–O films. J Appl Phys 112:53715

    Article  Google Scholar 

  36. Goto H, Tao H, Morita S, Takanashi Y, Hino A, Kishi T, Ochi M, Hayashi K et al (2014) In-line process monitoring for amorphous oxide semiconductor tft fabrication using microwave-detected photoconductivity decay technique. IEICE Trans Electron E 97.C:1055–1062

    Article  Google Scholar 

  37. Zheng S, Shi D, Liu L, Li G, Wang Q, Fang L, Elouadi B (2014) Oxygen vacancy-related dielectric relaxation and electrical conductivity in La-doped Ba(Zr0.9Ti0.1)O3 ceramics. J Mater Sci Mater Electron 25:4058–4065

    Article  CAS  Google Scholar 

  38. Han F, Deng J, Liu X, Yan T, Ren S, Ma X, Liu S, Peng B et al (2017) High-temperature dielectric and relaxation behavior of Yb-doped Bi0.5Na0.5TiO3 ceramics. Ceram Int 43:5564–5573

    Article  CAS  Google Scholar 

  39. Han F, Ren S, Deng J, Yan T, Ma X, Peng B, Liu L (2017) Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J Mater Sci Mater Electron 28:17378–17387

    Article  CAS  Google Scholar 

  40. Deng J, Sun X, Liu S, Liu L, Yan T, Fang L, Elouadi B (2016) Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics. J Adv Dielectr 6:1650009

    Article  CAS  Google Scholar 

  41. Wu S, Zhu W, Liu L, Shi D, Zheng S, Huang Y, Fang L (2014) Dielectric properties and defect chemistry of WO3-doped K0.5Na0.5NbO3 ceramics. J Electron Mater 43:1055–1061

    Article  CAS  Google Scholar 

  42. Liu X, Liu L, Han F, Liu S, Xiang H, Fang L (2016) Dielectric behavior of La2O3-modified 0.4(Ba0.8Ca0.2)TiO3–0.6Bi(Mg0.5Ti0.5)O3 lead-free ceramics. J Mater Sci Mater Electron 27:12128–12133

    Article  CAS  Google Scholar 

  43. Janotti A, Van De Walle CG (2005) Oxygen vacancies in ZnO. Appl Phys Lett 87:1–3

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51771074, 51521002 and U1601651), Guangdong Natural Science Foundation (Nos. 2016A030313459 and 2017A030310028), Guangdong Science and Technology Project (No. 2016B090907001) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honglong Ning or Junbiao Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Yao, R., Wang, Y. et al. Effects of praseodymium doping on the electrical properties and aging effect of InZnO thin-film transistor. J Mater Sci 54, 14778–14786 (2019). https://doi.org/10.1007/s10853-019-03941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03941-7

Navigation