Skip to main content
Log in

Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textiles for oil–water separation via thiol-ene click reaction

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Robust superhydrophobic cotton textiles exhibiting photocatalytic self-cleaning ability under UV light were successfully achieved by surface functionalization with anatase TiO2 sol and mercapto silanes, and hydrophobization with vinyl-terminated polydimethylsiloxane (V-PDMS) via thiol-ene click reaction. The modified cotton textiles not only showed outstanding water repellency with a water contact angle of 154.2°, but exhibited desirable photodegradation of oil red O by photocatalysis under UV irradiation. Moreover, the modified textiles exhibited excellent durability and stability after exposure to different severe conditions, such as acid and base solutions, organic solvents, laundering and UV exposure. The durably coated textiles manifested desirable separation performance in oil–water mixtures, and the separation efficiency was about 99.0% even after 20 times use. Cotton textiles with multi-functionality of superhydrophobicity, photocatalysis and oil-water separation are hopefully applied in a diverse range of practical applications in self-cleaning and oil-removal fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Xiang Y, Pang Y, Jiang X, Huang J, Xi F, Liu J (2018) One-step fabrication of novel superhydrophobic and superoleophilic sponge with outstanding absorbency and flame-retardancy for the selective removal of oily organic solvent from water. Appl Surf Sci 428:338–347

    Article  CAS  Google Scholar 

  2. Panda A, Varshney P, Mohapatra SS, Kumar A (2018) Development of liquid repellent coating on cotton fabric by simple binary silanization with excellent self-cleaning and oil–water separation properties. Carbohydr Polym 181:1052–1060

    Article  CAS  Google Scholar 

  3. Gupta RK, Dunderdale GJ, England MW, Hozumi A (2017) Oil/water separation techniques: a review of recent progresses and future directions. J Mater Chem A 5(31):16025–16058

    Article  CAS  Google Scholar 

  4. Xue ZX, Cao YZ, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2(8):2445–2460

    Article  CAS  Google Scholar 

  5. Ma Q, Cheng H, Fane AG, Wang R, Zhang H (2016) Recent development of advanced materials with special wettability for selective oil/water separation. Small 12(16):2186–2202

    Article  CAS  Google Scholar 

  6. Varshney P, Nanda D, Satapathy M, Mohapatra SS, Kumar A (2017) A facile modification of steel mesh for oil–water separation. N J Chem 41(15):7463–7471

    Article  CAS  Google Scholar 

  7. Pan Z, Cheng F, Zhao B (2017) Bio-inspired polymeric structures with special wettability and their applications: an overview. Polymers 9(12):725

    Article  Google Scholar 

  8. Li SH, Huang JY, Chen Z, Chen GQ, Lai YK (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55

    Article  CAS  Google Scholar 

  9. Shah SM, Zulfiqar U, Hussain SZ, Ahmad I, Habib ur R, Hussain I, Subhani T (2017) A durable superhydrophobic coating for the protection of wood materials. Mater Lett 203:17–20

    Article  CAS  Google Scholar 

  10. Tran VT, Lee BK (2017) Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil–water separations. Sci Rep 7(1):17520

    Article  Google Scholar 

  11. Lei S, Shi Z, Ou J, Wang F, Xue M, Li W, Qiao G, Guan X, Zhang J (2017) Durable superhydrophobic cotton fabric for oil/water separation. Colloids Surf Physicochem Eng Asp 533:249–254

    Article  CAS  Google Scholar 

  12. Jiang B, Zhang H, Sun Y, Zhang L, Xu L, Hao L, Yang H (2017) Covalent layer-by-layer grafting (LBLG) functionalized superhydrophobic stainless steel mesh for oil/water separation. Appl Surf Sci 406:150–160

    Article  CAS  Google Scholar 

  13. Zulfiqar U, Hussain SZ, Subhani T, Hussain I, Habib ur R (2018) Mechanically robust superhydrophobic coating from sawdust particles and carbon soot for oil/water separation, colloids surf. Physicochem Eng Asp 539:391–398

    Article  CAS  Google Scholar 

  14. Zhu T, Li S, Huang J, Mihailiasa M, Lai Y (2017) Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil–water separation. Mater Des 134:342–351

    Article  CAS  Google Scholar 

  15. Wang J, Han F, Liang B, Geng G (2017) Hydrothermal fabrication of robustly superhydrophobic cotton fibers for efficient separation of oil/water mixtures and oil-in-water emulsions. J Ind Eng Chem 54:174–183

    Article  CAS  Google Scholar 

  16. Ge B, Zhang ZZ, Zhu XT, Men XH, Zhou XY, Xue QJ (2017) A graphene coated cotton for oil/water separation. Compos Sci Technol 102:100–105

    Article  Google Scholar 

  17. Chen JY, Zhong XM, Lin J, Wyman I, Zhang GW, Yang H, Wang JB, Wu JZ, Wu X (2016) The facile preparation of self-cleaning fabrics. Compos Sci Technol 122:1–9

    Article  Google Scholar 

  18. Su X, Li H, Lai X, Zhang L, Wang J, Liao X, Zeng X (2017) Vapor-liquid sol–gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surface on polyester textile for oil–water separation. ACS Appl Mater Interfaces 9(33):28089–28099

    Article  CAS  Google Scholar 

  19. Shi Y, Wang Y, Feng X, Yue G, Yang W (2012) Fabrication of superhydrophobicity on cotton fabric by sol–gel. Appl Surf Sci 258(20):8134–8138

    Article  CAS  Google Scholar 

  20. Choi D, Yoo J, Sang MP, Dong SK (2017) Facile and cost-effective fabrication of patternable superhydrophobic surfaces via salt dissolution assisted etching. Appl Surf Sci 393:449–456

    Article  CAS  Google Scholar 

  21. He Y, Jiang C, Yin H, Chen J, Yuan W (2011) Superhydrophobic silicon surfaces with micro-nano hierarchical structures via deep reactive ion etching and galvanic etching. J Colloid Interface Sci 364(1):219–229

    Article  CAS  Google Scholar 

  22. Ming Z, Chengheng F, Chunxia W, Weiwei M, Lan C (2009) Superhydrophobic multi-scale ZnO nanostructures fabricated by chemical vapor deposition method. J Nanosci Nanotechnol 9(7):4211–4214

    Article  Google Scholar 

  23. Ma M, Mao Y, Gupta M, And KKG, Rutledge GC (2005) Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 38(23):9742–9748

    Article  CAS  Google Scholar 

  24. Yang M, Liu W, Jiang C, He S, Xie Y, Wang Z (2018) Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol–gel process. Carbohydr Polym 197:75–82

    Article  CAS  Google Scholar 

  25. Zhang J, Li B, Wu L, Wang A (2013) Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem Commun 49(98):11509–11511

    Article  CAS  Google Scholar 

  26. Li H, Liang T, Lai X, Su X, Zhang L, Zeng X (2018) Vapor–liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation. Appl Surf Sci 427:92–101

    Article  CAS  Google Scholar 

  27. Hou K, Jin Y, Chen J, Wen X, Xu S, Cheng J, Pi P (2017) Fabrication of superhydrophobic melamine sponges by thiol-ene click chemistry for oil removal. Mater Lett 202:99–102

    Article  CAS  Google Scholar 

  28. Xiao X, Cao G, Chen F, Tang Y, Liu X, Xu W (2015) Durable superhydrophobic wool fabrics coating with nanoscale Al2O3 layer by atomic layer deposition. Appl Surf Sci 349:876–879

    Article  CAS  Google Scholar 

  29. Liu JF, Xiao XY, Shi YL, Wan CX (2014) Fabrication of a superhydrophobic surface from porous polymer using phase separation. Appl Surf Sci 297:33–39

    Article  CAS  Google Scholar 

  30. Wang B, Zhang Y, Zhang L (2017) Selective surface tension induced patterning on flexible textiles via click chemistry. Nanoscale 9(14):4777–4786

    Article  CAS  Google Scholar 

  31. Deng S, Huang J, Chen Z, Lai Y (2017) Controllable superhydrophobic coating on cotton fabric by UV induced thiol-ene reaction for wettability patterning and device metallization. Adv Mater Interfaces 4(13):1700268

    Article  Google Scholar 

  32. Hano N, Takafuji M, Ihara H (2017) One-pot preparation of polymer microspheres having wrinkled hard surfaces through self-assembly of silica nanoparticles. Chem Commun 53(65):9147–9150

    Article  CAS  Google Scholar 

  33. Yan T, Chen X, Zhang T, Yu J, Jiang X, Hu W, Jiao F (2018) A magnetic pH-induced textile fabric with switchable wettability for intelligent oil/water separation. Chem Eng J 347:52–63

    Article  CAS  Google Scholar 

  34. Zhang H, Li Y, Lu Z, Chen L, Huang L, Fan M (2017) A robust superhydrophobic TiO2 NPs coated cellulose sponge for highly efficient oil–water separation. Sci Rep 7(1):9428

    Article  Google Scholar 

  35. Yin X, Sun C, Zhang B, Song Y, Wang N, Zhu L, Zhu B (2017) A facile approach to fabricate superhydrophobic coatings on porous surfaces using cross-linkable fluorinated emulsions. Chem Eng J 330:202–212

    Article  CAS  Google Scholar 

  36. Shang Q, Hu L, Hu Y, Liu C, Zhou Y (2017) Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles. Appl Phys A 124(1):25

    Article  Google Scholar 

  37. Abbas R, Elkhoshkhany N, Hefnawy A, Ebrahim S, Rahal A (2017) High stability performance of superhydrophobic modified fluorinated graphene films on copper alloy substrates. Adv Mater Sci Eng 2017:1–8

    Google Scholar 

  38. Gao S, Dong X, Huang J, Li S, Li Y, Chen Z, Lai Y (2018) Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil–water separation. Chem Eng J 333:621–629

    Article  CAS  Google Scholar 

  39. Fu S, Zhou H, Wang H, Ding J, Liu S, Zhao Y, Niu H, Rutledge GC, Lin T (2018) Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings. RSC Adv 8(2):717–723

    Article  CAS  Google Scholar 

  40. Gao S, Huang J, Li S, Liu H, Li F, Li Y, Chen G, Lai Y (2017) Facile construction of robust fluorine-free superhydrophobic TiO2@fabrics with excellent anti-fouling, water–oil separation and UV-protective properties. Mater Des 128:1–8

    Article  CAS  Google Scholar 

  41. Li D, Guo Z (2017) Stable and self-healing superhydrophobic MnO2@fabrics: applications in self-cleaning, oil/water separation and wear resistance. J Colloid Interface Sci 503:124–130

    Article  CAS  Google Scholar 

  42. Bano S, Zulfiqar U, Zaheer U, Awais M, Ahmad I, Subhani T (2018) Durable and recyclable superhydrophobic fabric and mesh for oil–water separation. Adv Eng Mater 20:1–9

    Article  Google Scholar 

  43. Marmur A (2017) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9):3517–3519

    Article  Google Scholar 

  44. Tung WS, Daoud WA (2011) Self-cleaning fibers via nanotechnology: a virtual reality. J Mater Chem 21(22):7858–7869

    Article  CAS  Google Scholar 

  45. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B-Environ 176:396–428

    Article  Google Scholar 

  46. Gao XY, Guo ZG (2017) Biomimetic superhydrophobic surfaces with transition metals and their oxides: a review. J Bionic Eng 14(3):401–439

    Article  Google Scholar 

  47. Leong S, Razmjou A, Wang K, Hapgood K, Zhang X, Wang H (2014) TiO2 based photocatalytic membranes: a review. J Membr Sci 472:167–184

    Article  CAS  Google Scholar 

  48. Wang S, Wu SD, Zhang JZ, Wang T (2017) One-step fabrication of recyclable and robust fluorine/polymer-free superhydrophobic fabrics. RSC Adv 7(39):24374–24381

    Article  Google Scholar 

  49. Zhang W, Lu X, Xin Z, Zhou C (2015) A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 7(46):19476–19483

    Article  CAS  Google Scholar 

  50. Qi K, Xin JH (2010) Room-temperature synthesis of single-phase anatase TiO2 by aging and its self-cleaning properties. ACS Appl Mater Interfaces 2(12):3479–3485

    Article  CAS  Google Scholar 

  51. Chen D, Mai Z, Liu X, Ye D, Zhang H, Yin X, Zhou Y, Liu M, Xu W (2018) UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose 25(6):3635–3647

    Article  CAS  Google Scholar 

  52. Alfieri I, Lorenzi A, Ranzenigo L, Lazzarini L, Predieri G, Lottici PP (2017) Synthesis and characterization of photocatalytic hydrophobic hybrid TiO2–SiO2 coatings for building applications. Build Environ 111:72–79

    Article  Google Scholar 

  53. Xu B, Ding JE, Feng L, Ding YY, Ge FY, Cai ZS (2015) Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf Coat Technol 262:70–76

    Article  CAS  Google Scholar 

  54. Liu K, Cao M, Fujishima A, Jiang L (2015) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114(19):10044–10094

    Article  Google Scholar 

  55. Pazokifard S, Esfandeh M, Mirabedini SM (2014) Photocatalytic activity of water-based acrylic coatings containing fluorosilane treated TiO2 nanoparticles. Prog Org Coat 77(8):1325–1335

    Article  CAS  Google Scholar 

  56. Zou HL, Lin SD, Tu YY, Liu GJ, Hu JW, Li F, Miao L, Zhang GW, Luo HS, Liu F, Hou CM, Hu ML (2013) Simple approach towards fabrication of highly durable and robust superhydrophobic cotton fabric from functional diblock copolymer. J Mater Chem A 1(37):11246–11260

    Article  CAS  Google Scholar 

  57. Deng ZY, Wang W, Mao LH, Wang CF, Chen S (2014) Versatile superhydrophobic and photocatalytic films generated from TiO2–SiO2@PDMS and their applications on fabrics. J Mater Chem A 2(12):4178–4184

    Article  CAS  Google Scholar 

  58. Zhao Y, Liu Y, Xu Q, Barahman M, Lyons AM (2015) Catalytic, self-cleaning surface with stable superhydrophobic properties: printed polydimethylsiloxane (PDMS) arrays embedded with TiO2 nanoparticles. ACS Appl Mater Interfaces 7(4):2632–2640

    Article  CAS  Google Scholar 

  59. Yu M, Wang Z, Liu H, Xie S, Wu J, Jiang H, Zhang J, Li L, Li J (2013) Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized. ACS Appl Mater Interfaces 5(9):3697–3703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Laboratory of Cellulose and Lignocellulosics, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, and Provincial Science and technology project of Guangdong Province (No. 2015B090925019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqu Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 14681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Liu, W., Yang, M. et al. Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textiles for oil–water separation via thiol-ene click reaction. J Mater Sci 54, 7369–7382 (2019). https://doi.org/10.1007/s10853-019-03373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03373-3

Navigation