Skip to main content
Log in

Fabrication of porous titanium scaffolds with centrosymmetric pore channels and improved radial fracture loading

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous titanium scaffolds with centrosymmetric pore channels in the radial direction were fabricated by freeze-casting, and TiH2/H2O slurries with different TiH2 contents (20, 25, and 30 vol.%) were cast in a cylindrical metal mold. The cold sources at the bottom and side of the metal mold caused ice crystals to grow radially. The lamellar channels of the porous titanium scaffolds were arranged in centrosymmetric regular channels in the radial axis and afforded the higher radial fracture loading than that of porous titanium prepared by conventional unidirectional freezing. As load-bearing artificial implants, porous titanium scaffolds require high strength in other directions aside from the axial axis. The centrosymmetric regular pore channels can satisfy the clinical demands and improve the security in practical applications, particularly on organisms. The porous scaffold prepared by this method had no toxicity and had good biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Xiang L, Wang C, Zhang W et al (2009) Fabrication and characterization of porous Ti6Al4 V parts for biomedical applications using electron beam melting process. Mater Lett 63:403–405

    Article  Google Scholar 

  2. Huiskes R (1993) Stress shielding and bone resorption in THA: clinical versus computer-simulation studies. Acta Orthop Belg 59:118–129

    Google Scholar 

  3. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554

    Article  CAS  Google Scholar 

  4. Park JB, Fung YC (2007) Biomaterials: an introduction. J Biomech Eng 102:161–229

    Article  Google Scholar 

  5. Wang C, Chen H, Zhu X et al (2017) An improved polymeric sponge replication method for biomedical porous titanium scaffolds. Mater Sci Eng C 70:1192–1199

    Article  CAS  Google Scholar 

  6. Ahn MK, Lee JB, Koh YH et al (2016) Rapid direct deposition of TiH2, paste for porous Ti scaffolds with tailored porous structures and mechanical properties. Mater Chem Phys 176:104–109

    Article  CAS  Google Scholar 

  7. Chen YJ, Feng B, Zhu YP et al (2009) Fabrication of porous titanium implants with biomechanical compatibility. Mater Lett 63:2659–2661

    Article  CAS  Google Scholar 

  8. Arifvianto B, Leeflang MA, Zhou J (2015) The compression behaviors of titanium/carbamide powder mixtures in the preparation of biomedical titanium scaffolds with the space holder method. Powder Technol 284:112–121

    Article  CAS  Google Scholar 

  9. Chen Y, Frith JE, Dehghanmanshadi A et al (2017) Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 75:169–174

    Article  CAS  Google Scholar 

  10. Liu J, Ruan J, Lin C et al (2017) Porous Nb–Ti–Ta alloy scaffolds for bone tissue engineering: fabrication, mechanical properties and in vitro/vivo biocompatibility. Mater Sci Eng C 78:503–512

    Article  CAS  Google Scholar 

  11. Ryan GE, Pandit AS, Apatsidis DP (2008) Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 29:3625–3635

    Article  CAS  Google Scholar 

  12. Torres-Sanchez C, Fra AM, Norrito M et al (2017) The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds. Mater Sci Eng C 77:219–228

    Article  CAS  Google Scholar 

  13. Han L, Wang M, Sun H et al (2017) Porous titanium scaffolds with self-assembled micro/nano hierarchical structure for dual functions of bone regeneration and anti-infection. J Biomed Mater Res 105:1–14

    Article  Google Scholar 

  14. Deville S (2010) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169

    Article  Google Scholar 

  15. Deville S, Saiz E, Tomsia AP (2006) Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27:480–5489

    Google Scholar 

  16. Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518

    Article  CAS  Google Scholar 

  17. Munch E, Saiz E, Tomsia AP et al (2009) Architectural control of freeze-cast ceramics through additives and templating. J Am Ceram Soc 92:534–1539

    Article  Google Scholar 

  18. Tang Y, Qiu S, Miao Q et al (2016) Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields. J Eur Ceram Soc 36:1233–1240

    Article  CAS  Google Scholar 

  19. Tang Y, Qiu S, Wu C et al (2016) Freeze cast fabrication of porous ceramics using tert-butyl alcohol–water crystals as template. J Eur Ceram Soc 36:1513–1518

    Article  CAS  Google Scholar 

  20. Zhang R, Han B, Fang D et al (2015) Porous Y2SiO5, ceramics with a centrosymmetric structure produced by freeze casting. Ceram Int 41:11517–11522

    Article  CAS  Google Scholar 

  21. Tang Y, Miao Q, Qiu S et al (2014) Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. J Eur Ceram Soc 34:4077–4082

    Article  CAS  Google Scholar 

  22. Liu R, Yuan J, Wang CA (2013) A novel way to fabricate tubular porous mullite membrane supports by TBA-based freezing casting method. J Eur Ceram Soc 33:3249–3256

    Article  Google Scholar 

  23. Li JC, Dunand DC (2011) Mechanical properties of directionally freeze-cast titanium foams. Acta Mater 59:146–158

    Article  CAS  Google Scholar 

  24. Lee H, Jang TS, Song J et al (2016) Multi-scale porous Ti6Al4V scaffolds with enhanced strength and biocompatibility formed via dynamic freeze-casting coupled with micro-arc oxidation. Mater Lett 185:21–24

    Article  CAS  Google Scholar 

  25. Torres-Sanchez C, McLaughlin J, Bonallo R (2018) Effect of pore size, morphology and orientation on the bulk stiffness of a porous Ti35Nb4Sn alloy. J Mater Eng Perform 27:2899–2909

    Article  CAS  Google Scholar 

  26. Bert CW (1985) Prediction of elastic moduli of solids with oriented porosity. J Mater Sci 20:2220–2224. https://doi.org/10.1007/BF01112307

    Article  Google Scholar 

  27. Tuncer N, Arslan G, Maire E et al (2011) Influence of cell aspect ratio on architecture and compressive strength of titanium foams. Mater Sci Eng A 528:7368–7374

    Article  CAS  Google Scholar 

  28. Liu X, Xue W, Shi C et al (2015) Fully interconnected porous Al2O3 scaffolds prepared by a fast cooling freeze casting method. Ceram Int 41:11922–11926

    Article  CAS  Google Scholar 

  29. Donachie MJJ (2000) Titanium-a technical guide. ASM International, Geauga

    Google Scholar 

  30. Jorgensen DJ, Dunand DC (2011) Structure and mechanical properties of Ti–6Al–4V with a replicated network of elongated pores. Acta Mater 59:640–650

    Article  CAS  Google Scholar 

  31. Tang Y, Qiu S, Miao Q et al (2017) Fabrication of lamellar porous alumina with regular structure via directional solidification with multiple cold sources. J Porous Mater 25:1–8

    Google Scholar 

  32. Lasalle Audrey, Guizard Christian, Maire Eric et al (2012) Particle redistribution and structural defect development during ice templating. Acta Mater 60:4594–4603

    Article  CAS  Google Scholar 

  33. Asthana R, Tewari SN (1993) The engulfment of foreign particles by a freezing interface. J Mater Sci 28:5414–5425. https://doi.org/10.1007/BF00367810

    Article  CAS  Google Scholar 

  34. Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639

    Article  CAS  Google Scholar 

  35. Maehara K, Doi K, Matsushita T et al (2002) Application of vanadium-free titanium alloys to artificial hip joints. Mater Trans 43:2936–2942

    Article  CAS  Google Scholar 

  36. Elhajje A, Kolos EC, Wang JK et al (2014) Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. J Mater Sci Mater Med 25:2471–2480. https://doi.org/10.1007/s10856-014-5277-2

    Article  CAS  Google Scholar 

  37. Gibson LJ, Ashby MF (1997) Cellular solid: structure and properties. Pergamon Press, Oxford

    Book  Google Scholar 

  38. Shao L, Gu Z, Zhou XZ, Zheng JJ (2014) Effects of pore shape and arrangement on the elastic modulus of porous materials. Bull Sci Technol 30:122–125

    Google Scholar 

  39. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670

    Article  CAS  Google Scholar 

  40. Han C, Li Y, Wang Q et al (2018) Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater 80:119–127

    Article  CAS  Google Scholar 

  41. Cachinho SC, Correia RN (2008) Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behavior. J Mater Sci Mater Med 19:451–457. https://doi.org/10.1007/s10856-006-0052-7

    Article  CAS  Google Scholar 

  42. Jung HD, Yook SW, Jang TS et al (2013) Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Mater Sci Eng C 33:59–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (No. 51572217), the National Natural Science Foundation of Shaanxi Province (No. 2016JQ5058) and China Postdoctoral Science special Foundation (No. 2016T90937). Thanks to the Department of Orthopaedics in The Fourth Military Medical University for supplying the cells for the MTT cytotoxicity test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Tang.

Ethics declarations

Conflict of interest

The named authors have no conflict of interest, financial or otherwise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, M., Tang, Y., Zhao, K. et al. Fabrication of porous titanium scaffolds with centrosymmetric pore channels and improved radial fracture loading. J Mater Sci 54, 3527–3535 (2019). https://doi.org/10.1007/s10853-018-3067-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3067-9

Keywords

Navigation