Skip to main content
Log in

Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tin oxide-coated gold nanostar hybrid nanostructures are prepared by first synthesizing gold nanostars (ca. 400 nm), then introducing Na2SnO3 precursor followed by its hydrolysis and formation of a tin oxide layer on nanoparticle surface. The synthesized hybrid structures have been characterized by combination of UV–Vis spectroscopy, transmission electron microscope (TEM), energy-dispersive X-ray studies, scanning electron microscope (SEM), X-Ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. The TEM and SEM analyses showed that gold nanostars have a coating with an approximate thickness of 15 nm. The tin (IV) oxide coating on the gold nanostars was identified by XRD and XPS analyses and confirmed by FTIR spectroscopy. Surface-enhanced Raman scattering (SERS) spectroscopy was performed on tin oxide-coated and uncoated gold nanostars with crystal violet as a probe molecule. The SERS studies revealed field enhancement properties of Au nanostars, thus their strong SERS activity remained after tin oxide coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. https://doi.org/10.1021/jp0516846

    Article  CAS  Google Scholar 

  2. Gong C, Dias MRS, Wessler GC et al (2017) Near-field optical properties of fully alloyed noble metal nanoparticles. Adv Opt Mater 5:1600568. https://doi.org/10.1002/adom.201600568

    Article  CAS  Google Scholar 

  3. Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111:3858–3887. https://doi.org/10.1021/cr1002547

    Article  CAS  Google Scholar 

  4. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217. https://doi.org/10.1039/B514191E

    Article  CAS  Google Scholar 

  5. Choi KW, Kim DY, Ye SJ, Park OO (2014) Shape- and size-controlled synthesis of noble metal nanoparticles. Adv Mater Res 3:199–216. https://doi.org/10.12989/amr.2014.3.4.199

    Article  Google Scholar 

  6. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862. https://doi.org/10.1021/cr0680282

    Article  CAS  Google Scholar 

  7. Nalbant Esenturk E, Hight Walker AR (2009) Surface-enhanced Raman scattering spectroscopy via gold nanostars. J Raman Spectrosc 40:86–91. https://doi.org/10.1002/jrs.2084

    Article  CAS  Google Scholar 

  8. Senthil Kumar P, Pastoriza-Santos I, Rodríguez-González B et al (2008) High-yield synthesis and optical response of gold nanostars. Nanotechnology 19:015606. https://doi.org/10.1088/0957-4484/19/01/015606

    Article  CAS  Google Scholar 

  9. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688. https://doi.org/10.1021/nl052409y

    Article  CAS  Google Scholar 

  10. Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  11. Kozanoglu D, Apaydin DH, Cirpan A, Esenturk EN (2013) Power conversion efficiency enhancement of organic solar cells by addition of gold nanostars, nanorods, and nanospheres. Org Electron 14:1720–1727. https://doi.org/10.1016/j.orgel.2013.04.008

    Article  CAS  Google Scholar 

  12. Zhou N, Polavarapu L, Wang Q, Xu Q-H (2015) Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency. ACS Appl Mater Interfaces 7:4844–4850. https://doi.org/10.1021/am508803c

    Article  CAS  Google Scholar 

  13. Park J, Huang J, Wang W et al (2012) Heat transport between Au nanorods, surrounding liquids, and solid supports. J Phys Chem C 116:26335–26341. https://doi.org/10.1021/jp308130d

    Article  CAS  Google Scholar 

  14. Zhao T, Jiang X-F, Gao N et al (2013) Solvent-dependent two-photon photoluminescence and excitation dynamics of gold nanorods. J Phys Chem B 117:15576–15583. https://doi.org/10.1021/jp405929w

    Article  CAS  Google Scholar 

  15. Jiang C, Guan Z, Rachel Lim SY et al (2011) Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale 3:3316. https://doi.org/10.1039/c1nr10396b

    Article  CAS  Google Scholar 

  16. Nam J, Won N, Jin H et al (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131:13639–13645. https://doi.org/10.1021/ja902062j

    Article  CAS  Google Scholar 

  17. Evcimen NI, Coskun S, Kozanoglu D et al (2015) Growth of branched gold nanoparticles on solid surfaces and their use as surface-enhanced Raman scattering substrates. RSC Adv 5:101656–101663. https://doi.org/10.1039/C5RA18570J

    Article  CAS  Google Scholar 

  18. Lee SH, Rusakova I, Hoffman DM et al (2013) Monodisperse SnO2-coated gold nanoparticles are markedly more stable than analogous SiO2-coated gold nanoparticles. ACS Appl Mater Interfaces 5:2479–2484. https://doi.org/10.1021/am302740z

    Article  CAS  Google Scholar 

  19. Zhou N, Ye C, Polavarapu L, Xu Q-H (2015) Controlled preparation of Au/Ag/SnO2 core–shell nanoparticles using a photochemical method and applications in LSPR based sensing. Nanoscale 7:9025–9032. https://doi.org/10.1039/C5NR01579K

    Article  CAS  Google Scholar 

  20. Janković V, Yang(Michael) Y, You J et al (2013) Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics. ACS Nano 7:3815–3822. https://doi.org/10.1021/nn400246q

    Article  CAS  Google Scholar 

  21. Wang Y, Li L, Wang C, Wang T (2016) Facile approach to synthesize uniform Au@mesoporous SnO2 yolk–shell nanoparticles and their excellent catalytic activity in 4-nitrophenol reduction. J Nanopart Res 18:2. https://doi.org/10.1007/s11051-015-3307-8

    Article  CAS  Google Scholar 

  22. Seh ZW, Liu S, Zhang S-Y et al (2011) Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. Chem Commun 47:6689. https://doi.org/10.1039/c1cc11729g

    Article  CAS  Google Scholar 

  23. You L, Mao Y, Ge J (2012) Synthesis of stable SiO2 @Au-nanoring colloids as recyclable catalysts: galvanic replacement taking place on the surface. J Phys Chem C 116:10753–10759. https://doi.org/10.1021/jp2119185

    Article  CAS  Google Scholar 

  24. Song H-M, Chon B-S, Jeon S-H et al (2015) Synthesis of Au@SnO2 core–shell nanoparticles with controllable shell thickness and their CO sensing properties. Mater Chem Phys 166:87–94. https://doi.org/10.1016/j.matchemphys.2015.09.031

    Article  CAS  Google Scholar 

  25. Prakash J, Kumar V, Kroon RE et al (2016) Optical and surface enhanced Raman scattering properties of Au nanoparticles embedded in and located on a carbonaceous matrix. Phys Chem Chem Phys 18:2468–2480. https://doi.org/10.1039/C5CP06134B

    Article  CAS  Google Scholar 

  26. Taub N, Krichevski O, Markovich G (2003) Growth of gold nanorods on surfaces. J Phys Chem B 107:11579–11582. https://doi.org/10.1021/jp036144s

    Article  CAS  Google Scholar 

  27. Fang C, Jia H, Chang S et al (2014) (Gold core)/(titania shell) nanostructures for plasmon-enhanced photon harvesting and generation of reactive oxygen species. Energy Environ Sci 7:3431–3438. https://doi.org/10.1039/C4EE01787K

    Article  CAS  Google Scholar 

  28. Shen Q, Jiang J, Liu S et al (2014) Facile synthesis of Au–SnO2 hybrid nanospheres with enhanced photoelectrochemical biosensing performance. Nanoscale 6:6315–6321. https://doi.org/10.1039/C4NR00520A

    Article  CAS  Google Scholar 

  29. Lee SH, Hoffman DM, Jacobson AJ, Lee TR (2013) Transparent, homogeneous tin oxide (SnO2) thin films containing SnO2-coated gold nanoparticles. Chem Mater 25:4697–4702. https://doi.org/10.1021/cm402098n

    Article  CAS  Google Scholar 

  30. Sun Y, Yang X, Zhao H, Wang R (2017) Non-symmetric hybrids of noble metal-semiconductor: interplay of nanoparticles and nanostructures in formation dynamics and plasmonic applications. Prog Nat Sci Mater Int 27:157–168. https://doi.org/10.1016/j.pnsc.2017.03.006

    Article  CAS  Google Scholar 

  31. Yu Y-T, Dutta P (2011) Synthesis of Au/SnO2 core–shell structure nanoparticles by a microwave-assisted method and their optical properties. J Solid State Chem 184:312–316. https://doi.org/10.1016/j.jssc.2010.11.009

    Article  CAS  Google Scholar 

  32. Tripathy SK, Mishra A, Jha SK et al (2013) Synthesis of thermally stable monodispersed Au@SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5:1456. https://doi.org/10.1039/c3ay26549h

    Article  CAS  Google Scholar 

  33. Zhan Q, Qian J, Li X, He S (2010) A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 21:055704. https://doi.org/10.1088/0957-4484/21/5/055704

    Article  CAS  Google Scholar 

  34. Atta S, Tsoulos TV, Fabris L (2016) Shaping gold nanostar electric fields for surface-enhanced Raman spectroscopy enhancement via silica coating and selective etching. J Phys Chem C 120:20749–20758. https://doi.org/10.1021/acs.jpcc.6b01949

    Article  CAS  Google Scholar 

  35. Al-Ogaidi I, Gou H, Al-kazaz AKA et al (2014) A gold@silica core–shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal Chim Acta 811:76–80. https://doi.org/10.1016/j.aca.2013.12.009

    Article  CAS  Google Scholar 

  36. Silva CO, Petersen SB, Reis CP et al (2016) EGF functionalized polymer-coated gold nanoparticles promote EGF photostability and EGFR internalization for photothermal therapy. PLoS ONE 11:e0165419. https://doi.org/10.1371/journal.pone.0165419

    Article  CAS  Google Scholar 

  37. Kreyling WG, Abdelmonem AM, Ali Z et al (2015) In vivo integrity of polymer-coated gold nanoparticles. Nat Nanotechnol 10:619–623. https://doi.org/10.1038/nnano.2015.111

    Article  CAS  Google Scholar 

  38. Tripathy SK, Jo J-N, Kwang-Joong O et al (2010) Optical studies of Au@SnO2/poly-(vinyl) alcohol core-shell nanoparticle thin films. J Mater Sci Mater Electron 21:758–764. https://doi.org/10.1007/s10854-009-9989-x

    Article  CAS  Google Scholar 

  39. Esenturk EN, Hight Walker AR (2013) Gold nanostar @ iron oxide core–shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties. J Nanopart Res 15:1364. https://doi.org/10.1007/s11051-012-1364-9

    Article  CAS  Google Scholar 

  40. Wang X, Fan H, Ren P, Li M (2014) Carbon coated SnO2: synthesis, characterization, and photocatalytic performance. RSC Adv 4:10284. https://doi.org/10.1039/c3ra45882b

    Article  CAS  Google Scholar 

  41. Luo H, Liang LY, Cao HT et al (2012) Structural, chemical, optical, and electrical evolution of SnOx films deposited by reactive rf magnetron sputtering. ACS Appl Mater Interfaces 4:5673–5677. https://doi.org/10.1021/am301601s

    Article  CAS  Google Scholar 

  42. Liu D, Wang J, Zhang Y et al (2018) Preparation of core–shell structured Au@SiO2 nanocomposite catalyst with Au core size below 2 nm without high-temperature calcination procedure. J Mater Sci 53:8086–8097. https://doi.org/10.1007/s10853-018-2085-y

    Article  CAS  Google Scholar 

  43. Wang D, Tejerina B, Lagzi I et al (2011) Bridging interactions and selective nanoparticle aggregation mediated by monovalent cations. ACS Nano 5:530–536. https://doi.org/10.1021/nn1025252

    Article  CAS  Google Scholar 

  44. Zhao K, Du G, Luo L et al (2015) Novel multi-layered SnO2 nanoarray: self-sustained hydrothermal synthesis, structure, morphology dependence and growth mechanism. CrystEngComm 17:2030–2040. https://doi.org/10.1039/C4CE02310B

    Article  CAS  Google Scholar 

  45. Dertli E, Coskun S, Esenturk EN (2013) Gold nanowires with high aspect ratio and morphological purity: synthesis, characterization, and evaluation of parameters. J Mater Res 28:250–260. https://doi.org/10.1557/jmr.2012.407

    Article  CAS  Google Scholar 

  46. Kurniawan F, Rahmi R (2017) Synthesis of SnO2 nanoparticles by high potential electrolysis. Bull Chem React Eng Catal 12:281. https://doi.org/10.9767/bcrec.12.2.773.281-286

    Article  CAS  Google Scholar 

  47. Persaud I, Grossman WEL (1993) Surface-enhanced Raman scattering of triphenylmethane dyes on colloidal silver. J Raman Spectrosc 24:107–112. https://doi.org/10.1002/jrs.1250240209

    Article  CAS  Google Scholar 

  48. Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935–5944. https://doi.org/10.1021/j150668a038

    Article  CAS  Google Scholar 

  49. Hrelescu C, Sau TK, Rogach AL et al (2009) Single gold nanostars enhance Raman scattering. Appl Phys Lett 94:153113. https://doi.org/10.1063/1.3119642

    Article  CAS  Google Scholar 

  50. Mei Y, Lu Y, Polzer F et al (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core–shell microgels. Chem Mater 19:1062–1069. https://doi.org/10.1021/cm062554s

    Article  CAS  Google Scholar 

  51. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  52. Sharma C, Rathore GS, Dubey V (2014) Determination of optical constants of SnO2 thin film for display application. Adv Phys Lett 1:38–42

    Google Scholar 

  53. Baco S, Chik A, Md. Yassin F (2012) Study on optical properties of tin oxide thin film at different annealing temperature. J Sci Technol 4:61–72

    Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. Aysen Yilmaz for access to XRD instrument in METU Department of Chemistry and Prof. Ahmet Oral for access to Raman spectrometer and light microscope in METU Department of Physics. We also acknowledge the support from METU-BAP Project: BAP-07-02-2014-007-684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emren Nalbant Esenturk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elci, A., Demirtas, O., Ozturk, I.M. et al. Synthesis of tin oxide-coated gold nanostars and evaluation of their surface-enhanced Raman scattering activities. J Mater Sci 53, 16345–16356 (2018). https://doi.org/10.1007/s10853-018-2792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2792-4

Keywords

Navigation