Skip to main content

Advertisement

Log in

Temperature-dependent dielectric and microwave absorption properties of silicon carbide fiber-reinforced oxide matrices composite

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Simultaneous improvement of mechanical and microwave absorption properties of the composites at high temperatures still undergoes considerable challenges. We have investigated the high-temperature microwave absorbing properties of the silicon carbide fiber-reinforced oxide matrices (SiCf/mullite–SiO2) composite on the basis of our previous work. Results indicate that the complex permittivity increases from 8.19 − j5.09 to 16.39 − j9.83 at 10 GHz with the temperature rising from 200 to 600 °C. The SiCf/mullite–SiO2 composite has relatively high tanδ values indicating superior microwave attenuation ability. The reflection loss (RL) values of the composite increase with rising thickness. It can be noticed that the RL response curves of different thicknesses are basically consistent at 200 and 400 °C. In addition, the RL value of the composite is less than − 5 dB in the whole X band when the thickness is under 2.9 mm and the temperature is below 400 °C. The hybrid oxide matrices of mullite and SiO2 are beneficial to improve the dielectric properties, especially high-temperature microwave absorption properties of the SiC fiber-reinforced ceramic matrix composite. The superior microwave absorption properties indicate that the SiCf/mullite–SiO2 composite is a promising candidate in aircraft engine nozzle and aerodynamic heating parts of aircrafts at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kong L, Yin XW, Li Q, Ye F, Liu Y, Duo GY, Yuan XW (2013) High-temperature electromagnetic wave absorption properties of ZnO/ZrSiO4 composite ceramics. J Am Ceram Soc 96:2211–2217

    Article  Google Scholar 

  2. Huang Y, Li N, Ma YF et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45:1614–1621

    Article  Google Scholar 

  3. Cao MS, Song WL, Hou ZL, Wen B, Yuan J (2010) The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48:788–796

    Article  Google Scholar 

  4. Qing YC, Wen QL, Luo F, Zhou WC (2016) Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J Mater Chem C 4:4853–4862

    Article  Google Scholar 

  5. Qing YC, Wang X, Zhou YY, Huang ZB, Luo F, Zhou WC (2014) Enhanced microwave absorption of multi-walled carbon nanotubes/epoxy composites incorporated with ceramic particles. Compos Sci Technol 102:161–168

    Article  Google Scholar 

  6. Chung DDL, Luo XC (1996) Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon 34:1293–1303

    Article  Google Scholar 

  7. Liu QL, Zhang D, Fan TX, Gu JJ, Miyamoto Y, Chen ZX (2008) Amorphous carbon-matrix composites with interconnected carbon nano-ribbon networks for electromagnetic interference shielding. Carbon 46:461–465

    Article  Google Scholar 

  8. Joseph N, Sebastian MT (2013) Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater Lett 90:64–67

    Article  Google Scholar 

  9. Liang JJ, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    Article  Google Scholar 

  10. Liu HT, Cheng HF, Wang J, Tang GP (2010) Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process. Ceram Int 36:2033–2037

    Article  Google Scholar 

  11. Kotani M, Inoue T, Kohyama A, Katoh Y, Okamura K (2003) Effect of SiC particle dispersion on microstructure and mechanical properties of polymer-derived SiC/SiC composite. Mater Sci Eng A 357:376–385

    Article  Google Scholar 

  12. Wang HD, Feng Q, Wang Z, Zhou HJ, Kan YM, Hu JB, Dong SM (2017) Microstructure evolution and high-temperature mechanical properties of SiCf/SiC composites in liquid fluoride salt environment. Corros Sci 124:131–137

    Article  Google Scholar 

  13. Hu Y, Luo F, Yang ZN, Zhou WC, Zhu DM, Duan SC (2017) Improvement dielectric and microwave properties of SiCf/SiC-AlPO4 composites prepared by precursor infiltration and pyrolysis process. J Alloy Compd 699:498–504

    Article  Google Scholar 

  14. Mohan A, Udayakumar A, Gandhi AS (2017) High temperature oxidation behaviour of CVD β-SiC seal coated SiCf/SiC composites in static dry air and combustion environment. Ceram Int 43:9472–9480

    Article  Google Scholar 

  15. Mu Y, Zhou WC, Wan F, Ding DH, Hu Y, Luo F (2015) High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Compos Part A Appl Sci Manuf 77:195–203

    Article  Google Scholar 

  16. Mu Y, Zhou WC, Hu Y, Wang HY, Luo F, Ding DH, Qing YC (2015) Temperature-dependent dielectric and microwave absorption properties of SiCf/SiC–Al2O3 composites modified by thermal cross-linking procedure. J Eur Ceram Soc 35:2991–3003

    Article  Google Scholar 

  17. Zhang XS, Yang LW, Liu HT (2018) Enhancements in mechanical and electrical properties of carbon nanotube films by SiC and C matrix bridging. J Mater Sci 53:11027–11037. https://doi.org/10.1007/s10853-018-2385-2

    Article  Google Scholar 

  18. Jian K, Chen ZH, Ma QS, Hu HF, Zheng WW (2007) Effects of polycarbosilane infiltration processes on the microstructure and mechanical properties of 3D-Cf/SiC composites. Ceram Int 33:905–909

    Article  Google Scholar 

  19. Mu Y, Zhou WC, Wang HY, Wang C, Qing YC (2014) Mechanical and dielectric properties of 2.5D SiCf/SiC-Al2O3 composites prepared via precursor infiltration and pyrolysis. Mater Sci Eng A 596:64–70

    Article  Google Scholar 

  20. Wang Q, Cao F, Xiang Y, Peng ZH (2017) Effects of ZrO2 coating on the strength improvement of 2.5 D SiCf/SiO2 composites. Ceram Int 43:884–889

    Article  Google Scholar 

  21. Wilshire B, Carreno F (2000) Deformation and damage processes during tensile creep of ceramic-fibre-reinforced ceramic–matrix composites. J Eur Ceram Soc 20:463–472

    Article  Google Scholar 

  22. Han S, Yang LW, Liu HT, Sun X, Jiang R, Mao WG, Chen ZH (2017) Micro-mechanical properties and interfacial engineering of SiC fiber reinforced sol-gel fabricated mullite matrix composites. Mater Des 131:265–272

    Article  Google Scholar 

  23. Gao H, Luo F, Wen QL, Duan SC, Zhou WC, Zhu DM (2018) Influence of different matrices on the mechanical and microwave absorption properties of SiC fiber-reinforced oxide matrix composites. Ceram Int 44:6010–6015

    Article  Google Scholar 

  24. Song HH, Zhou WC, Luo F, Huang ZB, Qing YC, Chen ML, Mu Y (2015) Temperature dependence of dielectric properties of SiCf/PyC/SiC composites. Mater Sci Eng B 195:12–19

    Article  Google Scholar 

  25. Dong N, Chen LQ, Yin XW, Ma XK, Sun XN, Cheng LF, Zhang LT (2016) Fabrication and electromagnetic interference shielding effectiveness of Ti3Si(Al)C2 modified Al2O3/SiC composites. Ceram Int 42:9448–9454

    Article  Google Scholar 

  26. Xu YX, Lu R, Li L (2004) Structure of colloid aggregation in silic sol silic and its colloid concretion during drying–one of some knowledges on molding shell with silic sol. Spec Cast Non Ferrous Alloy 2:52–54

    Google Scholar 

  27. Sato T, Ishizuka M, Shimada M (1986) Sintering and characterization of mullite-alumina composites. Ceram Int 12:61–65

    Article  Google Scholar 

  28. Ding DH, Zhou WC, Luo F, Chen ML, Zhu DM (2012) Dip-coating of boron nitride interphase and its effects on mechanical properties of SiCf/SiC composites. Mater Sci Eng A 543:1–5

    Article  Google Scholar 

  29. Micheli D, Apollo C, Pastore R, Marchetti M (2010) X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol 70:400–409

    Article  Google Scholar 

  30. Hu QY, Bian JH, Jin L et al (2018) Debye-like relaxation behavior and electric field induced dipole re-orientation of the 0.6BaTiO3-0.4Bi(Mg1/2Ti1/2)O3 ceramic. Ceram Int 44:922–930

    Article  Google Scholar 

  31. Tian H, Liu HT, Cheng HF (2013) Effects of SiC contents on the dielectric properties of SiO2f/SiO2 composites fabricated through a sol-gel process. Powder Technol 239:374–380

    Article  Google Scholar 

  32. Qing YC, Wen QL, Luo F, Zhou WC, Zhu DM (2016) Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J Mater Chem C 4:371–375

    Article  Google Scholar 

  33. Min DD, Zhou WC, Qing YC, Luo F, Zhu DM (2017) Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J Mater Sci 52:2373–2383. https://doi.org/10.1007/s10853-016-0532-1

    Article  Google Scholar 

  34. Correia NT, Ramos JJM (2000) On the cooperativity of the β-relaxation: a discussion based on dielectric relaxation and thermally stimulated depolarisation currents data. Phys Chem Chem Phys 2:5712–5715

    Article  Google Scholar 

  35. Xu P, Fu WJ, Hu YD, Ding YS (2018) Effect of annealing treatment on crystalline and dielectric properties of PVDF/PEG-containing ionic liquid composites. Compos Sci Technol 158:1–8

    Article  Google Scholar 

  36. Ryu HY, Wang Q, Raj R (2010) Ultrahigh-temperature semiconductors made from polymer-derived ceramics. J Am Ceram Soc 93:1668–1676

    Google Scholar 

  37. Liu Y, Luo F, Su JB, Zhou WC, Zhu DM (2015) Mechanical, dielectric, and microwave-absorption properties of alumina ceramic containing dispersed Ti3SiC2. J Electron Mater 44:867–873

    Article  Google Scholar 

  38. Wen QL, Zhou WC, Wang YD, Qing YC, Luo F, Zhu DM, Huang ZB (2017) Enhanced microwave absorption of plasma-sprayed Ti3SiC2/glass composite coatings. J Mater Sci 52:832–842. https://doi.org/10.1007/s10853-016-0379-5.

    Article  Google Scholar 

  39. Qing YC, Zhou WC, Luo F, Zhu DM (2016) Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram Int 42:16412–16416

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese National Natural Science Foundation (Grant No. 51072165), National Natural Science Foundation of China (No. 51402239), Fundamental Research Funds for the Central Universities (No. 3102014JCY01002) and States Key Laboratory of the Solidification Processing in NWPU (No. KP201307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Luo, F., Wen, Q. et al. Temperature-dependent dielectric and microwave absorption properties of silicon carbide fiber-reinforced oxide matrices composite. J Mater Sci 53, 15465–15473 (2018). https://doi.org/10.1007/s10853-018-2708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2708-3

Keywords