Skip to main content
Log in

Construction of iron porphyrin/titanoniobate nanosheet sensors for the sensitive detection of nitrite

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The single-layered well-dispersed HTi2NbO7 nanosheets (NSs) with the thickness of ~ 1.08 nm were obtained by a simple exfoliation method. The electrochemical sensors based on HTi2NbO7 NSs and 5,10,15,20-tetrakis (N-methylpyridinium-4-yl) porphyrinato iron(III) (FeTMPyP) for sensitive detection of nitrite were then fabricated through the self-assembly technique, which was certified by Zeta potential analysis. The prepared samples were fully characterized by X-ray diffraction, X-ray energy dispersive spectrometer, scanning electron microscope, atomic force microscope, high-resolution transmission electron microscope, Fourier transform infrared and ultraviolet–visible spectrum. Electrochemical measurements demonstrated that FeTMPyP/HTi2NbO7 NSs nanocomposites exhibited enhanced electrocatalytic activities toward the oxidation of nitrite due to increased electron-transport properties. The oxidation peak current of nitrite was linearly associated with its concentration in the range from 0.0999 to 3.15 mmol L−1, with the detection limit of 3.15 × 10−5 mol L−1 (S/N = 3). The possible mechanism for nitrite oxidation on the surface of modified electrode was proposed. This study indicated that this biosensor has satisfactory stability, and detects nitrite in wastewater with strong anti-interference performance and good recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Adarsh N, Shanmugasundaram M, Ramaiah D (2013) Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem 85:10008–10012. https://doi.org/10.1021/ac4031303

    Article  CAS  Google Scholar 

  2. Zhang Y, Su Z, Li B, Zhang L, Fan D, Ma H (2016) Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl Mater Int 8:12344–12351. https://doi.org/10.1021/acsami.6b02133

    Article  CAS  Google Scholar 

  3. Ferreira IMPLVO, Silva S (2008) Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 74:1598–1602. https://doi.org/10.1016/j.talanta.2007.10.004

    Article  CAS  Google Scholar 

  4. Zhao Z, Xia Z, Liu C, Huang H, Ye W (2017) Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154. https://doi.org/10.1016/j.electacta.2017.09.185

    Article  CAS  Google Scholar 

  5. Zou CE, Yang B, Bin D, Wang J, Li S, Yang P, Wang C, Shiraishi Y, Du Y (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141. https://doi.org/10.1016/j.jcis.2016.10.088

    Article  CAS  Google Scholar 

  6. Wang P, Wang M, Zhou F, Yang G, Qu L, Miao X (2017) Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem Commun 81:74–78. https://doi.org/10.1016/j.elecom.2017.06.006

    Article  CAS  Google Scholar 

  7. Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247. https://doi.org/10.1016/j.bios.2009.04.006

    Article  CAS  Google Scholar 

  8. Mani V, Periasamy AP, Chen SM (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78. https://doi.org/10.1016/j.elecom.2012.02.009

    Article  CAS  Google Scholar 

  9. Li Y, Wang P, Wang L, Lin X (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22:3120–3125. https://doi.org/10.1016/j.bios.2007.02.001

    Article  CAS  Google Scholar 

  10. Wang P, Zhou F, Wang Z, Lai C, Han X (2015) Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J Electroanal Chem 750:36–42. https://doi.org/10.1016/j.jelechem.2015.05.006

    Article  CAS  Google Scholar 

  11. Kung CW, Chang TH, Chou LY, Hupp JT, Farha OK, Ho KC (2015) Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem Commun 58:51–56. https://doi.org/10.1016/j.elecom.2015.06.003

    Article  CAS  Google Scholar 

  12. Wu H, Fan S, Jin X, Zhang H, Chen H, Dai Z, Zou X (2014) Construction of a zinc porphyrin–fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal Chem 86:6285–6290. https://doi.org/10.1021/ac500245k

    Article  CAS  Google Scholar 

  13. Kemmegne-Mbouguen JC, Angnes L (2015) Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode. Sens Actuators B Chem 212:464–471. https://doi.org/10.1016/j.snb.2015.02.046

    Article  CAS  Google Scholar 

  14. Winnischofer H, de Souza Lima S, Araki K, Toma HE (2003) Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Anal Chim Acta 480:97–107. https://doi.org/10.1016/s0003-2670(02)01594-5

    Article  CAS  Google Scholar 

  15. Liu C, Zhu H, Zhu Y, Dong P, Hou H, Xu Q, Chen X, Xi X, Hou W (2018) Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Appl Catal B Environ 228:54–63. https://doi.org/10.1016/j.apcatb.2018.01.074

    Article  CAS  Google Scholar 

  16. Zhai Z, Hu C, Yang X, Zhang L, Liu C, Fan Y, Hou W (2012) Nitrogen-doped mesoporous nanohybrids of TiO2 nanoparticles and HTiNbO5 nanosheets with a high visible-light photocatalytic activity and a good biocompatibility. J Mater Chem 22:19122–19131. https://doi.org/10.1039/c2jm32338a

    Article  CAS  Google Scholar 

  17. Zhai Z, Huang Y, Xu L, Yang X, Hu C, Zhang L, Fan Y, Hou W (2011) Thermostable nitrogen-doped HTiNbO5 nanosheets with a high visible-light photocatalytic activity. Nano Res. 4:635–647. https://doi.org/10.1007/s12274-011-0119-8

    Article  CAS  Google Scholar 

  18. Liu C, Han R, Ji H, Sun T, Zhao J, Chen N, Chen J, Guo X, Hou W, Ding W (2016) S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Phys Chem Chem Phys 18:801–810. https://doi.org/10.1039/c5cp06555k

    Article  CAS  Google Scholar 

  19. Zhai Z, Yang X, Xu L, Hu C, Zhang L, Hou W, Fan Y (2012) Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale 4:547–556. https://doi.org/10.1039/c1nr11091h

    Article  CAS  Google Scholar 

  20. Xin H, Ma R, Wang L, Ebina Y, Takada K, Sasaki T (2004) Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions. Appl Phys Lett 85:4187–4189. https://doi.org/10.1063/1.1812811

    Article  CAS  Google Scholar 

  21. Akatsuka K, Haga MA, Ebina Y, Osada M, Fukuda K, Sasaki T (2009) Construction of highly ordered lamellar nanostructures through Langmuir–Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. ACS Nano 3:1097–1106. https://doi.org/10.1021/nn900104u

    Article  CAS  Google Scholar 

  22. Osada M, Ebina Y, Funakubo H, Yokoyama S, Kiguchi T, Takada K, Sasaki T (2006) High-κ dielectric nanofilms fabricated from Titania nanosheets. Adv Mater 18:1023–1027. https://doi.org/10.1002/adma.200501224

    Article  CAS  Google Scholar 

  23. Schaak RE, Mallouk TE (2002) Exfoliation of layered rutile and perovskite tungstates. Chem Commun 7:706–707. https://doi.org/10.1039/b110220f

    Article  CAS  Google Scholar 

  24. Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M, Decher G (2001) Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem Mater 13:4661–4667. https://doi.org/10.1021/cm010478h

    Article  CAS  Google Scholar 

  25. Dias AS, Lima S, Carriazo D, Rives V, Pillinger M, Valente AA (2006) Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. J Catal 244:230–237. https://doi.org/10.1016/j.jcat.2006.09.010

    Article  CAS  Google Scholar 

  26. Xie K, Wei W, Yu H, Deng M, Ke S, Zeng X, Li Z, Shen C, Wang J, Wei B (2016) Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Adv 6:35746–35750. https://doi.org/10.1039/c6ra02530g

    Article  CAS  Google Scholar 

  27. Takagaki A, Yoshida T, Lu D, Kondo JN, Hara M, Domen K, Hayashi S (2004) Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts. J Phys Chem B 108:11549–11555. https://doi.org/10.1021/jp049170e

    Article  CAS  Google Scholar 

  28. Akatsuka K, Takanashi G, Ebina Y, Haga MA, Sasaki T (2012) Electronic band structure of exfoliated titanium-and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J Phys Chem C 116:12426–12433. https://doi.org/10.1021/jp302417a

    Article  CAS  Google Scholar 

  29. Shibata T, Takanashi G, Nakamura T, Fukuda K, Ebina Y, Sasaki T (2011) Titanoniobate and niobate nanosheet photocatalysts: superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ Sci 4:535–542. https://doi.org/10.1039/c0ee00437e

    Article  CAS  Google Scholar 

  30. He J, Li QJ, Tang Y, Yang P, Li A, Li R, Li HZ (2012) Characterization of HNbMoO6, HNbWO6 and HTiNbO5 as solid acids and their catalytic properties for esterification reaction. Appl Catal A Gen 443:145–152. https://doi.org/10.1016/j.apcata.2012.07.036

    Article  CAS  Google Scholar 

  31. Pan B, Zhao W, Zhang X, Li J, Xu J, Ma J, Liu L, Zhang D, Tong Z (2016) Research on the self-assembly of exfoliated perovskite nanosheets (LaNb2O7 ) and cobalt porphyrin utilized for the electrocatalytic oxidation of ascorbic acid. RSC Adv 6:46388–46393. https://doi.org/10.1039/c6ra06429a

    Article  CAS  Google Scholar 

  32. Tong Z, Shichi T, Takagi K (2002) Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B 106:13306–13310. https://doi.org/10.1021/jp021162f

    Article  CAS  Google Scholar 

  33. Ma J, Wu J, Zheng J, Liu L, Zhang D, Xu X, Yang X, Tong Z (2012) Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobates. Microporous Mesoporous Mater 151:325–329. https://doi.org/10.1016/j.micromeso.2011.10.016

    Article  CAS  Google Scholar 

  34. Zhang X, Wang M, Li D, Liu L, Ma J, Gong J, Yang X, Xu X, Tong Z (2013) Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J Solid State Electron 17:3177–3184. https://doi.org/10.1007/s10008-013-2230-0

    Article  CAS  Google Scholar 

  35. Wang Q, Lei J, Deng S, Zhang L, Ju H (2013) Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem Commun 49:916–918. https://doi.org/10.1039/c2cc37664d

    Article  CAS  Google Scholar 

  36. Suslick KS, Watson RA (1992) The photochemistry of chromium, manganese, and iron porphyrin complexes. New J Chem 16:633–642

    CAS  Google Scholar 

  37. Hou Y, Zuo F, Dagg A, Feng PY (2013) A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem 125:1286–1290. https://doi.org/10.1002/ange.201207578

    Article  Google Scholar 

  38. Zhang X, Feng D, Chen M, Ding Z, Tong Z (2009) Preparation and electrochemical behavior of methylene blue intercalated into layered niobate K4Nb6O17. J Mater Sci 44:3020–3025. https://doi.org/10.1007/s10853-009-3398-7

    Article  CAS  Google Scholar 

  39. Sousa AL, Santos WJ, Luz RC, Damos FS, Kubota LT, Tanaka AA, Tanaka SM (2008) Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-l-lysine film. Talanta 75:333–338. https://doi.org/10.1016/j.talanta.2007.10.016

    Article  CAS  Google Scholar 

  40. Yang B, Wang J, Bin D, Zhu M, Yang P, Du Y (2015) A three dimensional Pt nanodendrite/graphene/MnO2 nanoflower modified electrode for the sensitive and selective detection of dopamine. J Mater Chem B 3:7440–7448. https://doi.org/10.1039/c5tb01031d

    Article  CAS  Google Scholar 

  41. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. https://doi.org/10.1016/s0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  42. Armijo F, Goya MC, Reina M, Canales MJ, Arévalo MC, Aguirre MJ (2007) Electrocatalytic oxidation of nitrite to nitrate mediated by Fe(III) poly-3-aminophenyl porphyrin grown on five different electrode surfaces. J Mol Catal A Chem 268:148–154. https://doi.org/10.1016/j.molcata.2006.11.055

    Article  CAS  Google Scholar 

  43. Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim Acta 52:6237–6247. https://doi.org/10.1016/j.electacta.2007.03.072

    Article  CAS  Google Scholar 

  44. Lin A, Wen Y, Zhang L, Lu B, Li Y, Jiao Y, Yang H (2011) Layer-by-layer construction of multi-walled carbon nanotubes zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim Acta 56:1030–1036. https://doi.org/10.1016/j.electacta.2010.10.058

    Article  CAS  Google Scholar 

  45. Pan B, Ma J, Zhang X, Li J, Liu L, Zhang D, Yang M, Tong Z (2015) A laminar nanocomposite constructed by self-assembly of exfoliated α-ZrP nanosheets and manganese porphyrin for use in the electrocatalytic oxidation of nitrite. J Mater Sci 50:6469–6476. https://doi.org/10.1007/s10853-015-9205-8

    Article  CAS  Google Scholar 

  46. Liu SY, Chen YP, Fang F, Li SH, Ni BJ, Liu G, Tian Y, Xiong Y, Yu HQ (2008) Innovative solid-state microelectrode for nitrite determination in a nitrifying granule. Environ Sci Technol 42:4467–4471. https://doi.org/10.1021/es800409s

    Article  CAS  Google Scholar 

  47. Ojani R, Raoof JB, Zarei E (2008) Poly (ortho-toluidine) modified carbon paste electrode: a sensor for electrocatalytic reduction of nitrite. Electroanalysis 20:379–385. https://doi.org/10.1002/elan.200704045

    Article  CAS  Google Scholar 

  48. Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46. https://doi.org/10.1016/j.aca.2012.02.037

    Article  CAS  Google Scholar 

  49. do Carmo DR, Paim LL, Metzker G, Dias Filho NL, Stradiotto NR (2010) A novel nanostructured composite formed by interaction of copper octa (3-aminopropyl) octasilsesquioxane with azide ligands: preparation, characterization and a voltammetric application. Mater Res Bull 45:1263–1270. https://doi.org/10.1016/j.materresbull.2010.05.005

    Article  CAS  Google Scholar 

  50. Wang H, Huang Y, Tan Z, Hu X (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13–17. https://doi.org/10.1016/j.aca.2004.08.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Fund of Jiangsu Province (BK20161294), HHIT Research Project (Z2015011), Lianyungang Science Project (CG1602), and the University Science Research Project of Jiangsu Province (15KJB430004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Fan, Z., Yi, L. et al. Construction of iron porphyrin/titanoniobate nanosheet sensors for the sensitive detection of nitrite. J Mater Sci 53, 11403–11414 (2018). https://doi.org/10.1007/s10853-018-2423-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2423-0

Keywords

Navigation