Skip to main content

Advertisement

Log in

Exploring the effect of substitutional doping on the electronic properties of graphene oxide

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Through molecular and solid-state approaches, structural and electronic properties of graphene oxide (GO) using substitutional doping were studied. Nitrogen, boron, phosphorus, silicon, aluminum, arsenic, and germanium atoms were integrated to GO at various sites to search for a suitable candidate that can reduce the energy gap of GO. As per our molecular investigations, Si- and Ge-doped GO reduces nearly 10% of the gap compared to the undoped molecule, while P, As, and N doping enhance the gap more than 50%. B and mainly Al (more energetically favorable structures) were found to be a suitable choice to be doped in GO, as it causes up to a 60% reduction in the energy gap compared to that of pristine GO. Moreover, the periodic calculations revealed that the introduction of Al can turn the GO structure into a metallic one. In addition, our studies disclosed that not only the dopant type but also the dopant sites are crucial in order to alter the electronic properties of GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Du W, Jiang X, Zhu L (2013) From graphite to graphene: direct liquid phase exfoliation of graphite to produce single and few layered pristine graphene. J Mater Chem A 1:10592–10606

    Article  Google Scholar 

  2. Wang SJ, Geng Y, Zheng Q, Kim J (2010) Fabrication of highly conducting and transparent graphene films. Carbon 48:1815–1823

    Article  Google Scholar 

  3. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis properties and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

  4. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  Google Scholar 

  5. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nature 2:1015–1024

    Google Scholar 

  6. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Graphene related two-dimensional crystals and hybrid systems for energy conversion and storage. Science 347(6217):1246501-1–1246501-9

    Article  Google Scholar 

  7. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470

    Article  Google Scholar 

  8. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  9. Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, Chen CW, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509

    Article  Google Scholar 

  10. Humers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  11. Junqueira GMA, Mendonca JPA, Lima AH, Quirino WG, Sato F (2016) Enhancement of nonlinear optical properties of graphene oxide-based structures: push–pull models. RSC Adv 6:94437–94450

    Article  Google Scholar 

  12. Ao ZM, Jiang Q, Zhang RQ, Tan TT, Li S (2009) Al doped graphene A promising material for hydrogen storage at room temperature. J Appl Phys 105(7):074307-1–074307-6

    Article  Google Scholar 

  13. Wang X, Qin Y, Zhu L, Tang H (2015) Nitrogen doped reduced graphene oxide as a bifunctional material for removing bisphenols synergistic effect between adsorption and catalysis. Environ Sci Technol 49(11):6855–6864

    Article  Google Scholar 

  14. Tao H, Yan C, Robertson AW, Gao Y, Ding J, Zhang Y, Ma T, Sun Z (2017) N-Doping of graphene oxide at low temperature for the oxygen reduction reaction. Chem Commun 53:873–876

    Article  Google Scholar 

  15. Chen Y, Liu Yj, Wang Hx, Zhao Jx, Cai Qh, Wang Xz, Ding Yh (2013) Silicon-doped graphene an effective and metal free catalyst for NO reduction to N\(_2\)O. ACS Appl Mater Interfaces 5(13):5994–6000

    Article  Google Scholar 

  16. Dobrota AS, Pasti IA, Mentus SV, Skorodumova NV (2017) A DFT study of the interplay between dopants and oxygen functional groups over the graphene basal plane implications in energy related applications. Phys Chem Chem Phys PCCP 19:8530–8540

    Article  Google Scholar 

  17. Denis PA (2010) Band gap opening of monolayer and bilayer graphene doped with aluminium silicon phosphorus and sulfur. Chem Phys Lett 492(4):251–257

    Article  Google Scholar 

  18. Cruz-Silva E, Lpez-Uras F, Muoz-Sandoval E, Sumpter BG, Terrones H, Charlier JC, Meunier V, Terrones M (2009) Electronic transport and mechanical properties of phosphorus and phosphorus nitrogen doped carbon nanotubes. ACS Nano 3(7):1913–1921

    Article  Google Scholar 

  19. Lin TC, Li YS, Chiang WH, Pei Z (2017) A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon. Biosens Bioelectron 89(Part 1):511–517

    Article  Google Scholar 

  20. de Mendonça JPA, de Lima AH, Junqueira GMA, Quirino WG, Legnani C, Maciel IO, Sato F (2016) Structural and vibrational study of graphene oxide via coronene based models: theoretical and experimental results. Mater Res Express 3(5):055020-1–055020-10

    Google Scholar 

  21. He H, Klinowski J, Forster M, Lerf A (1998) A new structural model for graphite oxide. Chem Phys Lett 287:53–56

    Article  Google Scholar 

  22. Ullah S, Denis P, Sato F (2017) Cover picture triple doped monolayer graphene with boron nitrogen aluminum silicon phosphorus and sulfur. Chem Phys Chem 18(14):1864–1873

    Article  Google Scholar 

  23. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721

    Article  Google Scholar 

  24. Bhatnagar D, Singh S, Yadav S, Kumar A, Kaur I (2017) Experimental and theoretical investigation of relative optical band gaps in graphene generations. Mater Res Express 4(1):015101-1–015101-9

    Article  Google Scholar 

  25. Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173–1213

    Article  Google Scholar 

  26. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  28. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  Google Scholar 

  29. Schmidt MW et al (1993) Games Version, 22 Feb 2006 (R5), Iowa State University. J Comput Chem 14:1347–1363

    Article  Google Scholar 

  30. Stewart JJP, MOPAC2007, Stewart JamesJP Stewart Computational Chemistry, Version 7.227L. http://OpenMOPAC.net

  31. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane–wave calculations. Phys. Rev. B 43:1993–2006

    Article  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  33. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92:246401-1–246401-4

    Article  Google Scholar 

  34. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The Siesta method for ab initio order-n materials simulation. J Phys Condens Matter 14(11):2745–2779

    Article  Google Scholar 

  35. Ervasti MM, Fan Z, Uppstu A, Krasheninnikov AV, Harju A (2015) Silicon and silicon–nitrogen impurities in graphene: structure, energetics, and effects on electronic transport. Phys Rev B 92:235412-1–235412-16

    Article  Google Scholar 

  36. Denis P (2016) Mono and dual doped monolayer graphene with aluminum, silicon, phosphorus and sulfur. Comput Theor Chem 1097:40–47

    Article  Google Scholar 

  37. Denis PA, Pereyra Huelmo C, Martins AS (2016) Band gap opening in dual-doped monolayer graphene. J Phys Chem C 120(13):7103–7112

    Article  Google Scholar 

  38. Mersmann S, Mouhib H, Baldofski M (2014) Quantum-chemical ab initio calculations on \({\rm ala}-({\rm c}_{5}{\rm h}_{5}{\rm al})\) and galabenzene \(({\rm c}_{5}{\rm h}_{5}{\rm ga})\). Z Naturforschung A 69(7):349–359

    Google Scholar 

  39. Ullah S, Hussain A, Syed W, Saqlain MA, Ahmad I, Leenaerts O, Karim A (2015) Band-gap tuning of graphene by be doping and be, b co-doping: a DFT study. RSC Adv 5:55762–55773. https://doi.org/10.1039/C5RA08061D

    Article  Google Scholar 

  40. Hussain A, Ullah S, Farhan MA (2016) Fine tuning the band-gap of graphene by atomic and molecular doping: a density functional theory study. RSC Adv 6:55990–56003

    Article  Google Scholar 

  41. Ullah S, Hussain A, Sato F (2017) Rectangular and hexagonal doping of graphene with b, n, and o: a DFT study. RSC Adv 7:16064–16068

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Financiadora de Estudos e Projetos (FINEP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saif Ullah or Geórgia M. A. Junqueira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 586 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, E.B.V., de Mendonça, J.P.A., Ullah, S. et al. Exploring the effect of substitutional doping on the electronic properties of graphene oxide. J Mater Sci 53, 7516–7526 (2018). https://doi.org/10.1007/s10853-018-2076-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2076-z

Keywords

Navigation