Skip to main content
Log in

A biogenic TiO2-C-O nanohybrid grown from a Ti4+-polymer complex in green tissues of chilis, interface bonding, and tailored photocatalytic properties

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A nanostructured a-TiO2 (anatase) is well known to be a promising material for harvesting photocatalysis in ultraviolet–visible light for its applications. In this article, we report a simple biosynthesis of a stable compound a-TiO2-C-O of small core–shells by a hydrothermal reaction of titanium tetrabutoxide in small tissues (proteins, lipids, or carbohydrates) of green chili (hot) at moderate temperature followed by burning out the organics in a flame in camphor in open air. In a proposed microscopic model, the a-TiO2 is shown to be growing preferentially in support of an inbuilt biogenic 2D layer C–sp 2 (template) in the coherent (101) facets in a controlled shape of small cuboids (8–15 nm sizes), with a joint C–sp 2 charge/spin layer in an a-TiO2-C-O hybrid composite phase. A thin residual ‘Ti4+ -O-C’ surface layer lasts, with a rocking of a ‘C-O cage’ on the Ti4+ ions of 285 cm−1 frequency, in the samples heated at ≤ 600 °C in air. It is found to be promoting a markedly enhanced photocatalytic response in degrading methylene blue dye and 2-chlorophenol under a visible light irradiation. The results are described with N2 sorption hysteresis, microscopic images, Raman/XPS (X-ray photoelectron spectroscopy) bands, and ultraviolet–visible light absorption/emission spectra in the samples prepared of varied microscopic surface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285

    Article  Google Scholar 

  2. Wu L, Yu JC, Wang X, Zhang L, Yu J (2005) characterization of mesoporous nanocrystalline TiO2 photocatalysts synthesized via a sol-solvothermal process at a low temperature. J Solid State Chem 178:321–328

    Article  Google Scholar 

  3. Han S, Choi S-H, Kim S-S, Cho M, Jang B, Kim D-Y, Yoon J, Hyeon T (2005) Low-temperature synthesis of highly crystalline TiO2 nanocrystals and their application to photocatalysis. Small 1:812–816

    Article  Google Scholar 

  4. Zhang R, Tu B, Zhao D (2010) Synthesis of highly stable and crystalline mesoporous anatase by using a simple surfactant sulfuric acid carbonization method. Chem Eur J 16:9977–9981

    Article  Google Scholar 

  5. Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite. Phys Chem Chem Phys 16:20382–20386

    Article  Google Scholar 

  6. Zhang J, Vasei M, Sang Y, Liu H, Claverie JP (2016) TiO2@carbon photocatalysts: the effect of carbon thickness on catalysis. ACS Appl Mater Interfaces 8:1903–1912

    Article  Google Scholar 

  7. Jiang J, Tang X, Zhou S, Ding J, Zhou H, Zhang F, Zhang D, Fan T (2016) Synthesis of visible and near infrared light sensitive amorphous titania for photocatalytic hydrogen evolution. Green Chem 18:2056–2062

    Article  Google Scholar 

  8. Sreethawong T, Suzuki Y, Yoshikawa S (2005) Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. J Solid State Chem 178:329–338

    Article  Google Scholar 

  9. Fan W, Lai Q, Zhang Q, Wang Y (2011) Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J Phys Chem C 115:10694–10701

    Article  Google Scholar 

  10. Hu L, Zeng G, Chen G, Dong H, Liu Y, Wan J, Chen A, Guo Z, Yan M, Wu H, Yu Z (2016) Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. J Haz Mat 301:106–118

    Article  Google Scholar 

  11. Zeng G, Wan J, Huang D, Hu L, Huang C, Cheng M, Xue W, Gong X, Wang R, Jiang D (2017) Precipitation, adsorption and rhizosphere effect: the mechanisms for phosphate-induced Pb immobilization in soils-a review. J Haz Mat 339:354–367

    Article  Google Scholar 

  12. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801

    Article  Google Scholar 

  13. Dette C, Perez-Osorio MA, Kley CS, Punke P, Patrick CE, Jacobson P, Giustino F, Jung SJ, Kern K (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14:6533–6538

    Article  Google Scholar 

  14. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–272

    Article  Google Scholar 

  15. Paola AD, Marci G, Palmisano L, Schiavello M, Uosaki K, Ikeda S, Ohtani B (2002) Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions: characterization and photocatalytic activity for the degradation of 4-nitrophenol. J Phys Chem B 106:637–645

    Article  Google Scholar 

  16. Graciani J, Nambu A, Evans J, Rodriguez JA, Sanz JF (2008) Au ↔ N synergy and N-doping of metal oxide-based photocatalysts. J Am Chem Soc 130:12056–12063

    Article  Google Scholar 

  17. Zhang LW, Fu HB, Zhu YF (2008) Efficient TiO2 Photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater 18:2180–2189

    Article  Google Scholar 

  18. Li H, Bian Z, Zhu J, Zhang D, Li G, Huo Y, Li H, Lu Y (2007) Mesoporous titania spheres with tunable chamber structure and enhanced photocatalytic activity. J Am Chem Soc 129:8406–8407

    Article  Google Scholar 

  19. Zhang X-Y, Li H-P, Cui X-L, Lin Y (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806

    Article  Google Scholar 

  20. Paramasivam I, Jha H, Liu N, Schmuki P (2012) A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 8:3073–3103

    Article  Google Scholar 

  21. Hu L, Zhang C, Zeng G, Chen G, Wan J, Guo Z, Wu H, Yu Z, Zhou Y, Liu Z (2016) Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Adv 6:78595–78610

    Article  Google Scholar 

  22. Li X, Fan T, Zhou H, Chow S-K, Zhang W, Zhang D, Guo Q, Ogawa H (2009) enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates. Adv Funct Mater 19:45–56

    Article  Google Scholar 

  23. Sun D, Yang J, Wang X (2010) Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. Nanoscale 2:287–292

    Article  Google Scholar 

  24. Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21:11686–11707

    Article  Google Scholar 

  25. Joo JB, Zhang Q, Lee I, Dahl M, Zaera F, Yin Y (2012) Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv Funct Mater 22:166–174

    Article  Google Scholar 

  26. Wesarg F, Schlott F, Grabow J, Kurland H-D, Heßler N, Kralisch D, Müller FA (2012) In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Langmuir 28:13518–13525

    Article  Google Scholar 

  27. Li J, Chen Y, Wang Y, Yan Z, Duan D, Wang J (2015) Synthesis and photocatalysis of mesoporous titania templated by natural rubber latex. RSC Adv 5:21480–21486

    Article  Google Scholar 

  28. Mullin R (2003) Red-hot chili peppers. C & EN 41:1. https://doi.org/10.1021/cen-v081n044.p041

    Google Scholar 

  29. Conway SJ (2008) TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1. Chem Soc Rev 37:1530–1545

    Article  Google Scholar 

  30. Bhattacharya A, Chattopadhyay A, Mazumdar D, Chakravarty A, Pal S (2010) Antioxidant constituents and enzyme activities in chilli peppers. Int J Veg Sci 16:201–211

    Article  Google Scholar 

  31. Wesolowska A, Jadczak D, Grzeszczuk M (2011) Chemical composition of the pepper fruit extracts of hot cultivars Capsicum annuum L. Acta Sci Hortorum Cultus 10:171–184

    Google Scholar 

  32. Kumar K, Walia S (2012) L-asparaginase extracted from Capsicum annuum L. and development of asparagine biosensor for leukemia. Sens Transducers 144:192–200

    Google Scholar 

  33. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858

    Article  Google Scholar 

  34. Kumar SG, Rao KSRK (2014) Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale 6:11574–11632

    Article  Google Scholar 

  35. Cho KM, Kim KH, Choi HO, Jung H-T (2015) A highly photoactive, visible-light-driven graphene/2d mesoporous TiO2 photocatalyst. Green Chem 17:3972–3978

    Article  Google Scholar 

  36. Perosa A, Selva M (2012) Handbook of Green Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  37. Ram S, Fecht H (2011) Modulating up-energy transfer and violet-blue light emission in gold nanoparticles with surface adsorption of poly(vinyl pyrrolidone) molecules. J Phys Chem C 115:7817–7828

    Article  Google Scholar 

  38. Misra S, Karan T, Ram S (2015) Dynamics of surface spins in small core-shell magnets of Li0.35Zn0.30Fe2.35O4 bonds over a carbon surface and tailored magnetic properties. J Phys Chem C 119:23184–23195

    Article  Google Scholar 

  39. Mishra A, Ram S (2007) Surface enhanced optical absorption and photoluminescence in nonbonding electrons in small poly(vinyl pyrrolidone) molecules. J Chem Phys 126(084902):1–6

    Google Scholar 

  40. Shen J, Hu Y, Shi M, Li N, Ma H, Ye M (2010) One step synthesis of graphene oxide-magnetic nanoparticle composite. J Phys Chem C 114:1498–1503

    Article  Google Scholar 

  41. X-ray powder diffraction JCPDS file 021-1272 (2013) Joint Committee on Powder Diffraction Standard International Centre for Diffraction Data, Swarthmore, PA, USA

  42. Williamson G, Hall W (1953) X-ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall 1:22–31

    Article  Google Scholar 

  43. Yoon SB, Chai GS, Kang SK, Yu J-S, Gierszal KP, Jaroniec M (2005) Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. J Am Chem Soc 127:4188–4189

    Article  Google Scholar 

  44. Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882

    Article  Google Scholar 

  45. Dong F, Guo S, Wang H, Li X, Wu Z (2011) Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J Phys Chem C 115:13285–13292

    Article  Google Scholar 

  46. Yan J-A, Xian L, Chou MY (2009) Structural and electronic properties of oxidized graphene. Phys Rev Lett 103(086802):1–4

    Google Scholar 

  47. Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spect 7:321–324

    Article  Google Scholar 

  48. Dillen DC, Varahramyan KM, Corbet CM, Tutuc E (2012) Raman spectroscopy and strain mapping in individual Ge-SixGe1-x core-shell nanowires. Phys Rev B 86(45311):1–6

    Google Scholar 

  49. Kim IY, Lee JM, Kim TW, Kim HN, Kim H (2012) A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity. Small 8:1038–1048

    Article  Google Scholar 

  50. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, London

    Google Scholar 

  51. Jin Z, Meng F-L, Jia Y, Luo T, Liu J-Y, Sun B, Wang J, Liu J-H, Huang X-J (2013) Porous TiO2 nanowires derived from nanotubes: synthesis, characterization and their enhanced photocatalytic properties. Micro Meso Mater 181:146–153

    Article  Google Scholar 

  52. Rashid J, Barakat MA, Pettit SL, Kuhn JN (2014) InVO4/TiO2 composite for visible-light photocatalytic degradation of 2-chlorophenol in wastewater. Environ Technol 35:2153–2159

    Article  Google Scholar 

  53. Mishra A, Ram S (2009) Selective light emission in nonbonding electron transitions in poly(vinyl pyrrolidone) molecules on spin-coating in thin layers. J Phys Chem A 113:14067–14073

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported in part by All India Council for Technical Education (AICTE), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeswari, P.V., Tiwari, B., Ram, S. et al. A biogenic TiO2-C-O nanohybrid grown from a Ti4+-polymer complex in green tissues of chilis, interface bonding, and tailored photocatalytic properties. J Mater Sci 53, 3131–3148 (2018). https://doi.org/10.1007/s10853-017-1763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1763-5

Keywords

Navigation