Skip to main content
Log in

Self-healing supramolecular hydrogel of poly(vinyl alcohol)/chitosan carbon dots

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Supramolecular hydrogels are non-covalent three-dimensional networked materials with many advantages compared to covalently cross-linked ones. In this present work, a supramolecular polymer hydrogel composed of poly(vinyl alcohol) (PVA) and chitosan carbon dots (CDs) was prepared by using the freezing/thawing method. To demonstrate the performance characteristics of such a polymer hydrogel, infrared spectrum, SEM, thermal analysis, swelling ratio, rheological study, self-healing test, etc., were adopted. The result showed that PVA/CDs supramolecular hydrogel not only has excellent self-healing property, but also has good thermal stability. This study work shows the great potential of the PVA/CDs hydrogel as an exciting polymer hydrogel material in the field of environmental management and biological medicine to design multifunctional materials. The simple nontoxic ingredients may also make the hydrogels suitable substitutes for biomedical applications pending further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zheng W, Chen L-J, Yang G, Sun B, Wang X, Jiang B, Yin G-Q, Zhang L, Li X, Liu M, Chen G, Yang H-B (2016) Construction of smart supramolecular polymeric hydrogels cross-linked by discrete organoplatinum(II) metallacycles via post-assembly polymerization. J Am Chem Soc 138(14):4927–4937. doi:10.1021/jacs.6b01089

    Article  Google Scholar 

  2. Phadke A, Zhang C, Arman B, Hsu CC, Mashelkar RA, Lele AK, Tauber MJ, Arya G, Varghese S (2012) Rapid self-healing hydrogels. Proc Natl Acad Sci 109(12):4383–4388

    Article  Google Scholar 

  3. Rybtchinski B (2011) Adaptive supramolecular nanomaterials based on strong noncovalent interactions. ACS Nano 5(9):6791–6818

    Article  Google Scholar 

  4. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Controlled Release 190:254–273. doi:10.1016/j.jconrel.2014.03.052

    Article  Google Scholar 

  5. Can V, Kochovski Z, Reiter V, Severin N, Siebenbürger M, Kent B, Just J, Rabe JP, Ballauff M, Okay O (2016) Nanostructural evolution and self-healing mechanism of micellar hydrogels. Macromolecules 49(6):2281–2287. doi:10.1021/acs.macromol.6b00156

    Article  Google Scholar 

  6. Li G, Zhang H, Fortin D, Xia H, Zhao Y (2015) Poly(vinyl alcohol)-poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31(42):11709–11716. doi:10.1021/acs.langmuir.5b03474

    Article  Google Scholar 

  7. Cong H-P, Wang P, Yu S-H (2013) Stretchable and self-healing graphene oxide-polymer composite hydrogels: a dual-network design. Chem Mater 25(16):3357–3362. doi:10.1021/cm401919c

    Article  Google Scholar 

  8. Tuncaboylu DC, Sari M, Oppermann W, Okay O (2011) Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44(12):4997–5005. doi:10.1021/ma200579v

    Article  Google Scholar 

  9. Gulyuz U, Okay O (2014) Self-healing poly(acrylic acid) hydrogels with shape memory behavior of high mechanical strength. Macromolecules 47(19):6889–6899. doi:10.1021/ma5015116

    Article  Google Scholar 

  10. Jia Y-G, Zhu XX (2015) Self-healing supramolecular hydrogel made of polymers bearing cholic acid and β-cyclodextrin pendants. Chem Mater 27(1):387–393. doi:10.1021/cm5041584

    Article  Google Scholar 

  11. Li G, Wu J, Wang B, Yan S, Zhang K, Ding J, Yin J (2015) Self-healing supramolecular self-assembled hydrogels based on poly(l-glutamic acid). Biomacromolecules 16(11):3508–3518. doi:10.1021/acs.biomac.5b01287

    Article  Google Scholar 

  12. Shi Y, Wang M, Ma C, Wang Y, Li X, Yu G (2015) A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer. Nano Lett 15(9):6276–6281. doi:10.1021/acs.nanolett.5b03069

    Article  Google Scholar 

  13. Lu S, Gao C, Xu X, Bai X, Duan H, Gao N, Feng C, Xiong Y, Liu M (2015) Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation. ACS Appl Mater Interfaces 7(23):13029–13037. doi:10.1021/acsami.5b03143

    Article  Google Scholar 

  14. Hou S, Ma PX (2015) Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem Mater 27(22):7627–7635. doi:10.1021/acs.chemmater.5b02839

    Article  Google Scholar 

  15. Deng G, Li F, Yu H, Liu F, Liu C, Sun W, Jiang H, Chen Y (2012) Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett 1(2):275–279. doi:10.1021/mz200195n

    Article  Google Scholar 

  16. Luo F, Sun TL, Nakajima T, Kurokawa T, Zhao Y, Ihsan AB, Guo HL, Li XF, Gong JP (2014) Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel. Macromolecules 47(17):6037–6046. doi:10.1021/ma5009447

    Article  Google Scholar 

  17. Vivek B, Prasad E (2015) Reusable self-healing hydrogels realized via in situ polymerization. J Phys Chem B 119(14):4881–4887. doi:10.1021/jp511781e

    Article  Google Scholar 

  18. Kim YS, Liu M, Ishida Y, Ebina Y, Osada M, Sasaki T, Hikima T, Takata M, Aida T (2015) Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat Mater 14(10):1002–1007. doi:10.1038/nmat4363

    Article  Google Scholar 

  19. Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14(2):297–301. doi:10.1021/bm301844u

    Article  Google Scholar 

  20. Zhang Y, Kuang Y, Gao Y, Xu B (2011) Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir 27(2):529–537. doi:10.1021/la1020324

    Article  Google Scholar 

  21. Ghobril C, Rodriguez EK, Nazarian A, Grinstaff MW (2016) Recent advances in dendritic macromonomers for hydrogel formation and their medical applications. Biomacromolecules 17(4):1235–1252. doi:10.1021/acs.biomac.6b00004

    Article  Google Scholar 

  22. Yu F, Cao X, Du J, Wang G, Chen X (2015) Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond. ACS Appl Mater Interfaces 7(43):24023–24031. doi:10.1021/acsami.5b06896

    Article  Google Scholar 

  23. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers, PVA hydrogels, anionic polymerisation nanocomposites

  24. Jensen BE, Smith AA, Fejerskov B, Postma A, Senn P, Reimhult E, Pla-Roca M, Isa L, Sutherland DS, Stadler B, Zelikin AN (2011) Poly(vinyl alcohol) physical hydrogels: noncryogenic stabilization allows nano- and microscale materials design. Langmuir 27(16):10216–10223. doi:10.1021/la201595e

    Article  Google Scholar 

  25. Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33(7):2000

    Article  Google Scholar 

  26. Ricciardi R, Mangiapia G, Lo Celso F, Paduano L, Triolo R, Auriemma F, De Rosa C, Lauprêtre F (2005) Structural organization of poly(vinyl alcohol) hydrogels obtained by freezing and thawing techniques: a SANS study. Chem Mater 17(5):1183–1189

    Article  Google Scholar 

  27. Zhao D, Liao G, Gao G, Liu F (2006) Influences of intramolecular cyclization on structure and cross-linking reaction processes of PVA hydrogels. Macromolecules 39(3):1160–1164

    Article  Google Scholar 

  28. Zhang H, Xia H, Zhao Y (2012) Poly(vinyl alcohol) hydrogel can autonomously self-heal. ACS Macro Lett 1(11):1233–1236. doi:10.1021/mz300451r

    Article  Google Scholar 

  29. Chowdhury D, Gogoi N, Majumdar G (2012) Fluorescent carbon dots obtained from chitosan gel. RSC Adv 2(32):12156. doi:10.1039/c2ra21705h

    Article  Google Scholar 

  30. Cao Z, Gilbert RJ, He W (2009) Simple agarose-chitosan gel composite system for enhanced neuronal growth in three dimensions. Biomacromolecules 10(10):2954–2959

    Article  Google Scholar 

  31. Rivas-Araiza R, Alcouffe P, Rochas C, Montembault A, David L (2010) Micron range morphology of physical chitosan hydrogels. Langmuir 26(22):17495–17504. doi:10.1021/la102907u

    Article  Google Scholar 

  32. Gogoi N, Barooah M, Majumdar G, Chowdhury D (2015) Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl Mater Interfaces 7(5):3058–3067

    Article  Google Scholar 

Download references

Acknowledgements

This research is partly supported by National Natural Science Foundation of China (81273130, 41576098), Zhejiang Provincial Natural Science Foundation of China (LY13B070013), the Science and Technology Plan Project of Ningbo City (2012C50043), and K.C. Wong Magna Fund in Ningbo University, People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Wang.

Ethics declarations

Conflict of interest

The manuscript was written through contributions of all authors. No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 699 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, T., Chen, B. et al. Self-healing supramolecular hydrogel of poly(vinyl alcohol)/chitosan carbon dots. J Mater Sci 52, 10614–10623 (2017). https://doi.org/10.1007/s10853-017-1222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1222-3

Keywords

Navigation