Skip to main content
Log in

Preparation of CeO2–ZrO2–Al2O3 composite with layered structure for improved Pd-only three-way catalyst

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, two CeO2–ZrO2–Al2O3 composites with layered structure were prepared by sequential precipitation route (SP) and compared with that obtained from conventional coprecipitation method (CC). The structural, textural and redox properties of the Pd-supported three-way catalysts were investigated by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption, CO chemical adsorption, H2-temperature-programmed reduction and oxygen storage capacity (OSC). By adjusting the precipitation sequence of CZ and Al2O3 components, different combination styles of CZ and Al2O3 as well as different interaction between the two components are obtained, which consequently modifies the physicochemical properties, catalytic performance along with the thermal stability of the supported Pd/CeO2–ZrO2–Al2O3 catalysts. The catalysts derived from SP present comparable structural and textural thermal stability compared to that obtained from CC. From the aspects of XPS, TPR and OSC, more Ce3+ and improved redox properties are created by SP with respect to CC. In addition, the dispersion of palladium is enhanced due to the strong metal–support interaction. The catalytic performance evaluation results reveal that SP method leads to the formation of three-way catalysts with advanced catalytic activities for C3H8, CO and NO conversions especially when CZ is enriched in the outer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kašpar J, Fornasiero P, Graziani M (1999) Use of CeO2-based oxides in the three-way catalysis. Catal Today 50:285–298

    Article  Google Scholar 

  2. Twigg MV (2011) Catalytic control of emissions from cars. Catal Today 163:33–41

    Article  Google Scholar 

  3. Hatanaka M, Takahashi N, Tanabe T, Nagai Y, Dohmae K, Aoki Y, Yoshida T, Shinjoh H (2010) Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond. Appl Catal B Environ 99:336–342

    Article  Google Scholar 

  4. Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal A Gen 221:443–457

    Article  Google Scholar 

  5. Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts. Catal Today 77:407–417

    Article  Google Scholar 

  6. Fernández-García M, Martínez-Arias A, Iglesias-Juez A, Hungría AB, Anderson JA, Conesa JC, Soria J (2001) New Pd/CexZr1-xO2/Al2O3 three-way catalysts prepared by microemulsion Part 1. Characterization and catalytic behavior for CO oxidation. Appl Catal B Environ 31:39–50

    Article  Google Scholar 

  7. Vidmar P, Fornasiero P, Kašpar J, Gubitosa G, Graziani M (1997) Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide. J Catal 171:160–168

    Article  Google Scholar 

  8. Fornasiero P, Dimonte R, Rao GR, Kašpar J, Meriani S, Trovarelli A, Graziani M (1995) Rh-loaded CeO2–ZrO2 solid solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural properties. J Catal 151:168–177

    Article  Google Scholar 

  9. Colón G, Valdivieso F, Pijolat M, Baker RT, Calvino JJ, Bernal S (1999) Textural and phase stability of CexZr1-xO2 mixed oxides under high temperature oxidising conditions. Catal Today 50:271–284

    Article  Google Scholar 

  10. Lan L, Chen S, Cao Y, Zhao M, Gong M, Chen Y (2015) Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. J Colloid Interface Sci 450:404–416

    Article  Google Scholar 

  11. Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamoto T, Suda A, Sugiura M (2002) X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal Today 74:225–234

    Article  Google Scholar 

  12. Fornasiero P, Kašpar J, Sergo V, Graziani M (1999) Redox behavior of high-surface-area Rh-, Pt-, and Pd-loaded Ce0.5Zr0.5O2 mixed oxide. J Catal 182:56–69

    Article  Google Scholar 

  13. Wang X, Lu G, Guo Y, Jiang L, Guo Y, Li C (2009) Effect of additives on the structure characteristics, thermal stability, reducibility and catalytic activity of CeO2–ZrO2 solid solution for methane combustion. J Mater Sci 44:1294–1301. doi:10.1007/s10853-009-3275-4

    Article  Google Scholar 

  14. Zhou Y, Lan L, Gong M, Chen Y (2016) Modification of the thermal stablity of doped CeO2–ZrO2 mixed oxides with the addition of triethylamine and its application as a Pd-only three-way catalyst. J Mater Sci 51:4283–4295. doi:10.1007/s10853-016-9733-x

    Article  Google Scholar 

  15. Morikawa A, Suzuki T, Kanazawa T, Kikuta K, Suda A, Shinjo H (2008) A new concept in high performance ceria–zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier. Appl Catal B Environ 78:210–221

    Article  Google Scholar 

  16. Hailstone RK, DiFrancesco AG, Leong JG, Allston TD, Reed KJ (2009) A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J Phys Chem C 113:15155–15159

    Article  Google Scholar 

  17. Di Monte R, Fornasiero P, Kašpar J, Graziani M, Gatica JM, Bernal S, Gómez-Herrero A (2000) Stabilisation of nanostructured Ce0.2Zr0.8O2 solid solution by impregnation on Al2O3: a suitable method for the production of thermally stable oxygen storage/release promoters for three-way catalysts. Chem Commun 21:2167–2168

    Article  Google Scholar 

  18. Lin S, Yang X, Yang L, Zhou R (2015) Three-way catalytic performance of Pd/Ce0.67Zr0.33O2–Al2O3 catalysts: role of the different Pd precursors. Appl Surf Sci 327:335–343

    Article  Google Scholar 

  19. Zhao B, Li G, Ge C, Wang Q, Zhou R (2010) Preparation of Ce0.67Zr0.33O2 mixed oxides as supports of improved Pd-only three-way catalysts. Appl Catal B Environ 96:338–349

    Article  Google Scholar 

  20. Xian C, Li H, Chen L, Lee JS (2011) Morphological and catalytic stability of mesoporous peony-like ceria. Microporous Mesoporous Mater 142:202–207

    Article  Google Scholar 

  21. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis IV (2010) An investigation of the role of Zr and La dopants into Ce1-x-yZrxLayOδ enriched γ-Al2O3 TWC washcoats. Appl Catal A Gen 382:73–84

    Article  Google Scholar 

  22. Papavasiliou A, Tsetsekou A, Matsouka V, Konsolakis M, Yentekakis IV (2009) Development of a Ce–Zr–La modified Pt/γ-Al2O3 TWCs’ washcoat: effect of synthesis procedure on catalytic behavior and thermal stability. Appl Catal B Environ 90:162–174

    Article  Google Scholar 

  23. Kašpar J, Fornasiero P (2003) Nanostructured materials for advanced automotive de-pollution catalysts. J Solid State Chem 171:19–29

    Article  Google Scholar 

  24. Kozlov AI, Kim DH, Yezerets A, Andersen P, Kung HH, Kung MC (2002) Effect of preparation method and redox treatment on the reducibility and structure of supported ceria-zirconia mixed oxide. J Catal 209:417–426

    Article  Google Scholar 

  25. Wei Z, Li H, Zhang X, Yan S, Lv Z, Chen Y, Gong M (2008) Preparation and property investigation of CeO2–ZrO2–Al2O3 oxygen-storage compounds. J Alloys Compd 455:322–326

    Article  Google Scholar 

  26. Wang J, Wen J, Shen M (2008) Effect of interaction between Ce0.7Zr0.3O2 and Al2O3 on structural characteristics, thermal stability, and oxygen storage capacity. J Phys Chem C 112:5113–5122

    Article  Google Scholar 

  27. Lan L, Chen S, Cao Y, Gong M, Chen Y (2015) New insights into the structure of a CeO2–ZrO2–Al2O3 composite and its influence on the performance of the supported Pd-only three-way catalyst. Catal Sci Technol 5:4488–4500

    Article  Google Scholar 

  28. Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M (2010) Metallic Pd nanoparticles formed by Pd-O-Ce interaction: a reason for sintering-induced activation for CO oxidation. Chem Mater 22:6183–6190

    Article  Google Scholar 

  29. Yao HC, Yao YFY (1984) Ceria in automotive exhaust catalysts: I. Oxygen storage. J Catal 86:254–265

    Article  Google Scholar 

  30. Weng X, Zhang J, Wu Z, Liu Y, Wang H, Darr JA (2011) Continuous syntheses of highly dispersed composite nanocatalysts via simultaneous co-precipitation in supercritical water. Appl Catal B Environ 103:453–461

    Article  Google Scholar 

  31. Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449

    Article  Google Scholar 

  32. Yue B, Zhou R, Wang Y, Zheng X (2005) Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce-Zr/Al2O3 catalysts. Appl Catal A Gen 295:31–39

    Article  Google Scholar 

  33. Fernández-García M, Martínez-Arias A, Iglesias-Juez A, Belver C, Hungría AB, Conesa JC, Soria J (2000) Structural characteristics and redox behavior of CeO2-ZrO2/Al2O3 supports. J Catal 194:385–392

    Article  Google Scholar 

  34. Yao MH, Baird RJ, Kunz FW, Hoost TE (1997) An XRD and TEM investigation of the structure of alumina-supported ceria-zieconia. J Catal 166:67–74

    Article  Google Scholar 

  35. Di Monte R, Fornasiero P, Desinan S, Kašpar J, Gatica JM, Calvino JJ, Fonda E (2004) Thermal stabilization of CeZrO oxygen storage promoters by addition of AlO: effect of thermal aging on textural, structural, and morphological properties. Chem Mater 16:4273–4285

    Article  Google Scholar 

  36. Weng X, Perston B, Wang X, Abrahams I, Lin T, Yang S, Evans JRG, Morgan DJ, Carley AF, Bowker M, Knowles JC, Rehman I, Darr JA (2009) Synthesis and characterization of doped nano-sized ceria-zirconia solid solutions. Appl Catal B Environ 90:405–415

    Article  Google Scholar 

  37. Fan J, Weng D, Wu X, Ran R (2008) Modification of CeO2–ZrO2 mixed oxides by coprecipitated/impregnated Sr: effect on the microstructure and oxygen storage capacity. J Catal 258:177–186

    Article  Google Scholar 

  38. Franchini C, Cesar D, Schmal M (2010) The interaction of oxides of the Pd/Ce/Zr/Al2O3 catalysts prepared by impregnation over alumina and promoting effects on surface properties. Catal Lett 137:45–54

    Article  Google Scholar 

  39. Hu Z, Wan C, Lui Y, Dettling J, Steger JJ (1996) Design of a novel Pd three-way catalyst: integration of catalytic functions in three dimensions. Catal Today 30:83–89

    Article  Google Scholar 

  40. Kolli T, Rahkamaa-Tolonen K, Lassi U, Savimäki A, Keiski RL (2004) Influence of OSC material on the behaviour of metallic Pd catalysts in C2H4 and CO oxidation as well as in NO reduction. Top Catal 30–31:341–346

    Article  Google Scholar 

  41. Raju V, Jaenicke S, Chuah GK (2009) Effect of hydrothermal treatment and silica on thermal stability and oxygen storage capacity of ceria-zirconia. Appl Catal B Environ 91:92–100

    Article  Google Scholar 

  42. Martínez-Arias A, Fernández-García M, Belver C, Conesa JC, Soria J (2000) EPR study on oxygen handling properties of ceria, zirconia and Zr-Ce (1:1) mixed oxide samples. Catal Lett 65:197–204

    Article  Google Scholar 

  43. Wu X, Xu L, Weng D (2004) The thermal stability and catalytic performance of Ce-Zr promoted Rh-Pd/γ-Al2O3 automotive catalysts. Appl Surf Sci 221:375–383

    Article  Google Scholar 

  44. Fan J, Wu X, Liang Q, Ran R, Weng D (2008) Thermal ageing of Pt on low-surface-area CeO2–ZrO2–La2O3 mixed oxides: effect on the OSC performance. Appl Catal B Environ 81:38–48

    Article  Google Scholar 

  45. Guo Y, Lu G, Zhang Z, Zhang S, Qi Y, Liu Y (2007) Preparation of CexZr1-xO2 (x = 0.75, 0.62) solid solution and its application in Pd-only three-way catalysts. Catal Today 126:296–302

    Article  Google Scholar 

  46. Wang Q, Li Z, Zhao B, Li G, Zhou R (2011) Effect of synthesis method on the properties of ceria–zirconia modified alumina the catalytic performance of its supported Pd-only three-way catalyst. J Mol Catal A Chem 344:132–137

    Article  Google Scholar 

  47. Luo M, Zheng X (1999) Redox behaviour and catalytic properties of Ce0.5Zr0.5O2-supported palladium catalysts. Appl Catal A Gen 189:15–21

    Article  Google Scholar 

  48. Liotta L, Longo A, Macaluso A, Martorana A, Pantaleo G, Venezia A, Deganello G (2004) Influence of the SMSI effect on the catalytic activity of a Pt(1%)/Ce0.6Zr0.4O2 catalyst: SAXS, XRD, XPS and TPR investigations. Appl Catal B Environ 48:133–149

    Article  Google Scholar 

  49. Liu L, Wei T, Zi X, He H, Dai H (2010) Research on assembly of nano-Pd colloid and fabrication of supported Pd catalysts from the metal colloid. Catal Today 153:162–169

    Article  Google Scholar 

  50. Bueno-López A, Such-Basáňez I, Salinas-Martínez de Lecea C (2006) Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2. J Catal 244:102–112

    Article  Google Scholar 

  51. Jen HW, Graham GW, Chun W, McCabe RW, Cuif JP, Deutsch SE, Touret O (1999) Characterization of model automotive exhaust catalysts: Pd on ceria and ceria-zirconia supports. Catal Today 50:309–328

    Article  Google Scholar 

  52. Bekyarova E, Fornasiero P, Kašpar J, Graziani M (1998) CO oxidation on Pd/CeO2-ZrO2 catalysts. Catal Today 45:179–183

    Article  Google Scholar 

  53. Dong F, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D (2004) Dynamic oxygen mobility and a new insight into the role of Zr atoms in three-way catalysts of Pt/CeO2-ZrO2. Catal Today 93–95:827–832

    Article  Google Scholar 

  54. Shan W, Feng Z, Li Z, Zhang J, Shen W, Li C (2004) Oxidative steam reforming of methanol on Ce0.9Cu0.1Oγ catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods. J Catal 228:206–217

    Article  Google Scholar 

  55. He H, Dai H, Ng L, Wong K, Au CT (2002) Pd-, Pt-, and Rh-loaded Ce0.6Zr0.35Y0.05O2 three-way catalysts: an investigation on performance and redox properties. J Catal 206:1–13

    Article  Google Scholar 

  56. Wang Q, Li G, Zhao B, Zhou R (2010) Synthesis of La modified ceria–zirconia solid solution by advanced supercritical ethanol drying technology and its application in Pd-only three-way catalyst. Appl Catal B Environ 100:516–528

    Article  Google Scholar 

  57. Zhao M, Shen M, Wang J (2007) Effect of surface area and bulk structure on oxygen storage capacity of Ce0.67Zr0.33O2. J Catal 248:258–267

    Article  Google Scholar 

  58. Mamontov E, Brezny R, Koranne M, Egami T (2003) Nanoscale heterogeneities and oxygen storage capacity of Ce0.5Zr0.5O2. J Phys Chem B 107:13007–13014

    Article  Google Scholar 

  59. Wang Q, Li G, Zhao B, Shen M, Zhou R (2010) The effect of La doping on the structure of Ce0.2Zr0.8O2 and the catalytic performance of its supported Pd-only three-way catalyst. Appl Catal B 101:150–159

    Article  Google Scholar 

  60. Hungría AB, Fernández-García M, Anderson JA, Martínez-Arias A (2005) The effect of Ni in Pd–Ni/(Ce, Zr)Ox/Al2O3 catalysts used for stoichiometric CO and NO elimination. Part 2: catalytic activity and in situ spectroscopic studies. J Catal 235:262–271

    Article  Google Scholar 

  61. Di Monte R, Fornasiero P, Kašpar J, Rumori P, Gubitosa G, Graziani M (2000) Pd/Ce0.6Zr0.4O2/Al2O3 as advanced materials for three-way catalysts. Part 1. Catalyst characterisation, thermal stability and catalytic activity in the reduction of NO by CO. Appl Catal B Environ 24:157–167

    Article  Google Scholar 

  62. Kolli T, Lassi U, Rahkamaa-Tolonen K, Kinnunen TJJ, Keiski RL (2006) The effect of barium on the catalytic behaviour of fresh and aged Pd-Ba-OSC/Al2O3 catalysts. Appl Catal A Gen 298:65–72

    Article  Google Scholar 

  63. Fornasiero P, Balducci G, Kašpar J, Meriani S, Di Monte R, Graziani M (1996) Metal-loaded CeO2–ZrO2 solid solutions as innovative catalysts for automotive catalytic converters. Catal Today 29:47–52

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the National Hi-tech Research and Development Program of China (863 Program, 2015AA034603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanhu Chen or Yaoqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, L., Li, H., Chen, S. et al. Preparation of CeO2–ZrO2–Al2O3 composite with layered structure for improved Pd-only three-way catalyst. J Mater Sci 52, 9615–9629 (2017). https://doi.org/10.1007/s10853-017-1168-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1168-5

Keywords

Navigation