Skip to main content
Log in

Thermoluminescence kinetics parameters of ZnO exposed to beta particle irradiation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, we report the dosimetric characterization and the evaluation of the kinetics parameters of trapping states of ZnO phosphors obtained thought a chemical route. Pellet-shaped samples present thermoluminescence (TL) properties suitable for use as radiation detectors and dosimeters. The glow curve is composed of three peaks with the maxima at about 412, 530 and 600 K. The last peak is located into the temperature range considered most suitable for TL dosimetry applications. The activation energies and the frequency factors of trapping states involved in the TL emission were evaluated using the initial rise method, peak shape methods, and glow curve deconvolution (GCD). The values of the activation energies obtained using peak shape methods agree with those computed from GCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Azorín J, Furetta C, Scacco A (1993) Preparation and properties of thermoluminescent materials. Phys Status Solidi 138:9–46. doi:10.1002/pssa.2211380102

    Article  Google Scholar 

  2. Furetta C (2003) Handbook of thermoluminescence. World Scientific, Singapore. doi:10.1142/9789812564863

    Book  Google Scholar 

  3. Özgür U, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301. doi:10.1063/1.1992666

    Article  Google Scholar 

  4. Burlacu A, Ursaki VV, Skuratov VA et al (2008) The impact of morphology upon the radiation hardness of ZnO layers. Nanotechnology 19:215714. doi:10.1088/0957-4484/19/21/215714

    Article  Google Scholar 

  5. Cruz-Vázquez C, Burruel-Ibarra SE, Grijalva-Monteverde H et al (2007) Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation. Radiat Eff Defects Solids 162:737–743. doi:10.1080/10420150701482089

    Article  Google Scholar 

  6. Secu CE, Sima M (2009) Photoluminescence and thermoluminescence of ZnO nano-needle arrays and films. Opt Mater (Amst) 31:876–880. doi:10.1016/j.optmat.2008.10.025

    Article  Google Scholar 

  7. Sahu D, Acharya BS, Bag BP et al (2010) Probing the surface states in nano ZnO powder synthesized by sonication method: photo and thermo-luminescence studies. J Lumin 130:1371–1378. doi:10.1016/j.jlumin.2010.02.049

    Article  Google Scholar 

  8. Pal PP, Manam J (2013) Evaluation of kinetics parameters in the X-irradiated TSL studies of RE3+-doped (RE = Eu, Tb) ZnO nanorods for dosimetric applications. Radiat Phys Chem 88:7–13. doi:10.1016/j.radphyschem.2013.03.023

    Article  Google Scholar 

  9. Reddy AJ, Kokila MK, Nagabhushana H et al (2012) Structural, EPR, photo and thermoluminescence properties of ZnO: Fe nanoparticles. Mater Chem Phys 133:876–883. doi:10.1016/j.matchemphys.2012.01.111

    Article  Google Scholar 

  10. McKeever SWS, Moscovitch M, Townsend PD (1995) Thermoluminescence dosimetry materials: properties and uses. Nuclear Technology Pub, England

  11. Garlick GFJ, Gibson AF (1948) The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc Phys Soc 60:574–590. doi:10.1088/0959-5309/60/6/308

    Article  Google Scholar 

  12. Randall JT, Wilkins MHF (1945) The phosphorescence of various solids. Proc R Soc Lond Ser A Math Phys Sci 184:347–364

    Article  Google Scholar 

  13. Borbón-Nuñez HA, Cruz-Vázquez C, Bernal R et al (2014) Thermoluminescence properties of sintered ZnO. Opt Mater (Amst) 37:398–403. doi:10.1016/j.optmat.2014.06.034

    Article  Google Scholar 

  14. Grossweiner LI (1953) A note on the analysis of first-order glow curves. J Appl Phys 24:1306. doi:10.1063/1.1721152

    Article  Google Scholar 

  15. Lushchik ChB (1956) The investigation of trapping centers in crystals by the method of thermal bleaching. Sov Phys JETP 3:390

    Google Scholar 

  16. Halperin A, Braner AA (1960) Evaluation of thermal activation energies from glow curves. Phys Rev 117:408–415. doi:10.1103/PhysRev.117.408

    Article  Google Scholar 

  17. Balarin M (1975) Direct evaluation of activation energy from half-width of glow peaks and a special nomogram. Phys Status Solidi 31:K111–K114. doi:10.1002/pssa.2210310259

    Article  Google Scholar 

  18. Balarin M (1979) Half-width and asymmetry of glow peaks and their consistent analytical representation. J Therm Anal 17:319–332. doi:10.1007/BF01914023

    Article  Google Scholar 

  19. Chen R (1969) Glow curves with general order kinetics. J Electrochem Soc 116:1254–1257. doi:10.1149/1.2412291

    Article  Google Scholar 

  20. Chen R (1969) On the calculation of activation energies and frequency factors from glow curves. J Appl Phys 40:570. doi:10.1063/1.1657437

    Article  Google Scholar 

  21. Pagonis V, Kitis G, Furetta C (2006) Numerical and practical exercises in thermoluminescence. Numer Pract Exerc Thermolumin. doi:10.1007/0-387-30090-2

    Google Scholar 

  22. McKeever SWS (1980) On the analysis of complex thermoluminescence. Glow-curves: resolution into individual peaks. Phys Status Solidi 62:331–340. doi:10.1002/pssa.2210620139

    Article  Google Scholar 

Download references

Acknowledgements

H. A. Borbón-Nuñez kindly thanks DGAPA-UNAM for a postdoctoral fellowship position.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Cruz-Vázquez or R. Bernal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borbón-Nuñez, H.A., Iriqui-Razcón, J.L., Cruz-Vázquez, C. et al. Thermoluminescence kinetics parameters of ZnO exposed to beta particle irradiation. J Mater Sci 52, 5208–5215 (2017). https://doi.org/10.1007/s10853-017-0761-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0761-y

Keywords

Navigation