Skip to main content

Advertisement

Log in

Micro-mechanism during long-term creep of a precipitation-strengthened Ni-based superalloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The long-term creep behavior of a Ni-based superalloy Haynes 282 at 700 and 750 °C was investigated. The creep curves exhibit the traditional shape with three creep stages. The coarsening of the γ′ phase during creep at 700 and 750 °C can be detected. The applied stress plays an important role in the coarsening of γ′ particles because of the lattice misfit and the difference of elastic modulus between the matrix and γ′ phase. Dislocation shearing into the γ′ phase and the Orowan process are the dominant creep deformation mechanisms at 700 °C/322 MPa. Dislocations tend to shearing into γ′ phase at first; nevertheless, the Orowan bowing mechanism replaces the process of shear as the coarsening of γ′ phase. The dominant deformation mechanism at 750 °C/187 MPa and 750 °C/215 MPa is dislocation gliding combined with dislocation climbing. Dislocation networks distributed in the interface of γ/γ′ phase may change the direction of dislocations and promote them to climb over the γ′ phase. The fracture surfaces were observed by scanning electron microscopy. Intergranular fracture is the dominant failure mode of the three samples because of the softening of grain boundary and stress concentration. Quasi-cleavage fracture, which are attributed to the stress concentration at the carbides/matrix interface, can be observed on the fracture surface of the specimen crept at 700 °C/322 MPa, whereas dimples with small precipitates inside can be detected on the fracture surface of the samples crept at 750 °C/187 MPa and 750 °C/215 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhong ZH, Gu YF, Yuan Y, Shi Z (2013) A new wrought Ni–Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700°C. Mater Lett 109:38–41

    Article  Google Scholar 

  2. Patel SJ, DeBarbadillo JJ, Baker BA, Gollihue RD (2013) Nickel base superalloys for next generation coal fired A-USC power plants. Proced Eng 55:246–252

    Article  Google Scholar 

  3. Chi CY, Yu HY, Xie XS (2013) Critical high temperature materials for 700°C A-USC power plant. World Iron Steel 2:42–59

    Google Scholar 

  4. Yuan Y, Zhong ZH, Yu ZS, Yin HF et al (2015) Tensile and creep deformation of a newly developed Ni-Fe-based superalloy for 700 °C advanced ultra-supercritical boiler applications. Met Mater Int 21:659–665

    Article  Google Scholar 

  5. Manabu T, Ryuichi K (2010) The effect of heat treatments on the creep-rupture properties of a wrought Ni-Cr heat-resistent alloy at 973 K. J Mater Sci 45:4029–4035. doi:10.1007/s10853-010-4481-9

    Article  Google Scholar 

  6. Cabibbo M, Gariboldi E, Spigarelli S, Ripamonti D (2008) Creep behavior of INCOLOY alloy 617. J Mater Sci 43:2912–2921. doi:10.1007/s10853-007-1803-7

    Article  Google Scholar 

  7. Pike LM (2008) Development of a fabricable gamma-prime (γ′) strengthened superalloy. TMS, Warrendale, pp 191–200

    Google Scholar 

  8. Brommesson R, Ekh M (2012) Experiments and modelling of the cyclic behaviour of Haynes 282. Tech Mech 32:130–145

    Google Scholar 

  9. Matysiak H, Zagorska M, Andersson J, Balkowiec A et al (2013) Microstructure of Haynes® 282® superalloy after vacuum induction melting and investment casting of thin-walled components. Materials 6:5016–5037

    Article  Google Scholar 

  10. Jo CY, Jones N, Choe SJ, Knowles D (1998) High temperature mechanical properties and creep crack initiation of DS CM186LC for nozzle guide vane. Met Mater 4:1017–1025

    Article  Google Scholar 

  11. Rozman KA, Kruzic JJ, Hawk JA (2015) Fatigue crack growth behavior of nickel-base superalloy Haynes 282 at 550–750 °C. J Mater Eng Perform 24:2841–2846

    Article  Google Scholar 

  12. Haan J, Bezold A, Broeckmann C (2015) Interaction between particle precipitation and creep behavior in the Ni-base alloy 617B: microstructural observations and constitutive material model. Mater Sci Eng A 640:305–313

    Article  Google Scholar 

  13. Sajjadi SA, Nategh A (2001) A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111. Mater Sci Eng A 307:158–164

    Article  Google Scholar 

  14. Xie J, Tian S, Shang LJ, Zhou X (2014) Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature. Mater Sci Eng A 606:304–312

    Article  Google Scholar 

  15. Kvapilova M, Kucharova K, Sklenicka V, Svoboda M et al (2011) Creep behaviour and microstructure changes of model cast Ni-Cr-W-C alloys. Proced Eng 10:839–844

    Article  Google Scholar 

  16. Xie J, Tian S, Zhou X (2013) Creep properties and deformation mechanisms of a FGH95 Ni-based superalloy. J Mater Eng Perform 22:2048–2055

    Article  Google Scholar 

  17. Unocic RR, Viswanathan GB, Sarosi PM, Karthikeyan S et al (2008) Mechanisms of creep deformation in polycrystalline Ni-base disk superalloys. Mater Sci Eng A 483–484:25–32

    Article  Google Scholar 

  18. Viswanathan GB, Sarosi PM, Henry HM, Whitis DD et al (2005) Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT. Acta Mater 53:3041–3057

    Article  Google Scholar 

  19. Kovarik L, Unocic RR, Li J, Sarosi P et al (2009) Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog Mater Sci 54:839–873

    Article  Google Scholar 

  20. Karthikeyan S, Unocic RR, Sarosi PM, Viswanathan GB et al (2006) Modeling microtwinning during creep in Ni-based superalloys. Scr Mater 54:1157–1162

    Article  Google Scholar 

  21. Tortorelli PF, Yamamoto Y, Maziase PJ, Moser JL et al (2012) Materials for advanced ultra-supercritical (A-USC) steam boilers. In: 26th Annual conference on fossil energy materials, Pittsburgh, PA

  22. Guo JT (2007) Materials science and engineering for superalloys. Science Press Ltd, Beijing

    Google Scholar 

  23. Rettberg LH, Pollock TM (2014) Localized recrystallization during creep in nickel-based superalloys GTD444 and René N5. Acta Mater 73:287–297

    Article  Google Scholar 

  24. Boehlert CJ, Longanbach SC (2011) A comparison of the microstructure and creep behavior of cold rolled HAYNES® 230 alloy™ and HAYNES® 282 alloy™. Mater Sci Eng A 528:4888–4898

    Article  Google Scholar 

  25. Santella M, Shingledecker J, Swindeman B (2010) Materials for advanced ultra-supercritical steam boilers. In: 24th Annual conference on fossil energy materials, Pittsburgh, PA

  26. Lu YL, Chen Z, Li YS, Wang YX (2006) Atomic-scale computer simulation for the coarsening mechanism of the cubic alloy including coherent strain energy. Real Met Mater Eng 35:1686–1690

    Google Scholar 

  27. Yu JJ, Sun XF, Jin T, Zhao N et al (2010) High temperature creep and low cycle fatigue of a nickel-base superalloy. Mater Sci Eng A 527:2379–2389

    Article  Google Scholar 

  28. Vorontsov VA, Shen C, Wang Y, Dye D et al (2010) Shearing of γ′ precipitates by a 〈112〉 dislocation ribbons in Ni-base superalloys: a phase field approach. Acta Mater 58:4110–4119

    Article  Google Scholar 

  29. Phillipsa PJ, Mills MJ (2013) Fine-scale structure of dislocations and debris in deformed Ni-based superalloy R104. Philos Mag 93:82–95

    Article  Google Scholar 

  30. Tan LM, Zhang YW, Jia J, Han SB (2016) Precipitation of μ phase in nickel-based powder metallurgy superalloy FGH97. J Iron Steel Res Int 23:851–856

    Article  Google Scholar 

  31. Liu YQ (2015) Study on microstructures and properties of Haynes 282 superalloy. Kunming University of Science and Technology, Kunming

    Google Scholar 

  32. Song XQ, Tang LY, Chen Z (2016) Characteristic and application of a new Ni-based superalloy Haynes 282. Mater Rev 30:116–120

    Google Scholar 

  33. Hong HU, Rho BS, Nam SW (2001) Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel. Mater Sci Eng A 318:285–292

    Article  Google Scholar 

  34. Lapin J (1999) High temperature creep of precipitation-strengthened Ni3Al-based alloy. Intermetallics 7:599–609

    Article  Google Scholar 

  35. Ai SH, Lupinc V, Maldini M (1992) Creep fracture mechanisms in single crystal superalloys. Scr Metall Mater 26:579–584

    Article  Google Scholar 

  36. Chen YQ, Pan SP, Liu WH, Cai ZH et al (2015) Effect of precipitates on creep behaviors of Al-Cu-Mg alloy. Chin J Nonferr Metals 25:900–909

    Google Scholar 

  37. Gabb TP, Draper SL, Hull DR, Mackay RA et al (1989) The role of interfacial dislocation networks in high-temperature creep of superalloys. Mater Sci Eng A 118:59–69

    Article  Google Scholar 

  38. Xie J, Tian S, Shang LJ, Zhou X (2014) Creep behaviors and role of dislocation network in a powder metallurgy Ni-based superalloy during medium-temperature. Mater Sci Eng A 606:304–312

    Article  Google Scholar 

  39. Sherry AH, Pilkington R (1993) The creep fracture of a single-crystal superalloy. Mater Sci Eng A 172:51–61

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by the National Natural Science Foundation of China (Grant Nos. U1361201, 51474176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Tang, L., Chen, Z. et al. Micro-mechanism during long-term creep of a precipitation-strengthened Ni-based superalloy. J Mater Sci 52, 4587–4598 (2017). https://doi.org/10.1007/s10853-016-0703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0703-0

Keywords

Navigation