Skip to main content

Advertisement

Log in

Zinc oxide nanostructure-based dye-sensitized solar cells

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Developing new technologies that could lead to alternatives to the traditional silicon-based solar panels, and to efficiently light the world in the future, is critically important because of limited natural petroleum resources. Dye-sensitized solar cells (DSSCs) are promisingly efficient and clean hybrid, organic–inorganic, low-cost molecular solar cell devices. The key components of DSSCs are the organic dyes that play the role of a photosensitizer—like the chlorophyll of a green plant that is responsible for photosynthesis—and nanostructured semiconductor metal oxides. Because of their unique, multifunctional properties, zinc oxide (ZnO) nanostructures are promising materials to use to create photoanodes for DSSCs. This review looks at recent developments in the field of ZnO-based DSSC devices; synthesis of ZnO nanostructures with variable morphologies, including nanorods, nanofibers, nanotubes, nano-/microflowers, thin sheets, and nanoaggregates; factors that control the growth and morphologies of these nanomaterials; and the role of crystallographic planes for the synthesis of versatile ZnO nanostructures. This review also covers photoelectrode fabrication, DSSC device components, nature and chemical features of the dyes used as photosensitizers, and operational principles. In addition, various photovoltaic parameters such as current density, open-circuit voltage, fill factor, photoconversion efficiency, and factors that influence these parameters for ZnO-based DSSCs are summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

Similar content being viewed by others

References

  1. Butler MA, Ginley DS (1980) Principles of photoelectrochemical, solar energy conversion. J Mater Sci 15:1–19. doi:10.1007/BF00552421

    Article  Google Scholar 

  2. BP Statistical Review of World Energy (2014) London BP. doi: 10.1016/j.egypro.2013.06.172

  3. BP (2010) BP Statistical Review of World Energy, London, BP

  4. Becquerel AE (1839) Memoire sur les effects d´electriques produits sous l´ influence des rayons solaires. Acad des Sci 9:561–567

    Google Scholar 

  5. Fritts C (1885) On the Fritts selenium cell and batteries. Van Nostrands Eng Mag 32:388–395

    Google Scholar 

  6. Chapin D, Fuller C, Pearson G (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25:676–677

    Article  Google Scholar 

  7. Tsubomura H, Matsumura YNTA (1976) Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261:402

    Article  Google Scholar 

  8. Desilvestro J, Graetzel M, Kavan L et al (1985) Highly efficient sensitization of titanium dioxide. J Am Chem Soc 107:2988–2990

    Article  Google Scholar 

  9. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  10. Wang ZS, Kawauchi H, Kashima T, Arakawa H (2004) Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord Chem Rev 248:1381–1389

    Article  Google Scholar 

  11. Bach U, Lupo D, Comte P et al (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585

    Article  Google Scholar 

  12. Lee DU, Jang SR, Vittal R et al (2008) CTAB facilitated spherical rutile TiO2 particles and their advantage in a dye-sensitized solar cell. Sol Energy 82:1042–1048

    Article  Google Scholar 

  13. Zhao D, Peng T, Lu L et al (2008) Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles. J Phys Chem C 112:8486–8494

    Article  Google Scholar 

  14. Alivov Y, Fan ZY (2010) Dye-sensitized solar cells using TiO2 nanoparticles transformed from nanotube arrays. J Mater Sci 45:2902–2906. doi:10.1007/s10853-010-4281-2

    Article  Google Scholar 

  15. Chappel S, Zaban A (2002) Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids. Sol Energy Mater Sol Cells 71:141–152

    Article  Google Scholar 

  16. Bandara J, Divarathne CM, Nanayakkara SD (2004) Fabrication of n-p junction electrodes made of n-type SnO2 and p-type NiO for control of charge recombination in dye sensitized solar cells. Sol Energy Mater Sol Cells 81:429–437

    Article  Google Scholar 

  17. Quintana M, Marinado T, Nonomura K et al (2009) Organic chromophore-sensitized ZnO solar cells: electrolyte-dependent dye desorption and band-edge shifts. J Photochem Photobiol A Chem 202:159–163

    Article  Google Scholar 

  18. Green ANM, Palomares E, Haque SA et al (2005) Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J Phys Chem B 109:12525–12533

    Article  Google Scholar 

  19. Qin P, Zhu H, Edvinsson T et al (2008) Design of an organic chromophore for P-type dye-sensitized solar cells. J Am Chem Soc 130:8570–8571

    Article  Google Scholar 

  20. Le Viet A, Jose R, Reddy MV et al (2010) Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J Phys Chem C 114:21795–21800

    Article  Google Scholar 

  21. Chang H, Kao MJ, Cho KC et al (2011) Integration of CuO thin films and dye-sensitized solar cells for thermoelectric generators. Curr Appl Phys 11:S19–S22

    Article  Google Scholar 

  22. Habibi MH, Karimi B, Zendehdel M, Habibi M (2013) Fabrication, characterization of two nano-composite CuO–ZnO working electrodes for dye-sensitized solar cell. Spectrochim Acta - Part A Mol Biomol Spectrosc 116:374–380

    Article  Google Scholar 

  23. Niu H, Zhang S, Ma Q et al (2013) Dye-sensitized solar cells based on flower-shaped α-Fe2O3 as a photoanode and reduced graphene oxide-polyaniline composite as a counter electrode. RSC Adv 3:17228–17235

    Article  Google Scholar 

  24. Cavas M, Gupta RK, Al-Ghamdi AA et al (2013) Preparation and characterization of dye sensitized solar cell based on nanostructured Fe2O3. Mater Lett 105:106–109

    Article  Google Scholar 

  25. Lee HJ, Yum JH, Leventis HC et al (2008) CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J Phys Chem C 112:11600–11608

    Article  Google Scholar 

  26. Chen J, Song JL, Sun XW et al (2009) An oleic acid-capped CdSe quantum-dot sensitized solar cell. Appl Phys Lett 94:153115

    Article  Google Scholar 

  27. Cheng L, Hou Y, Zhang B et al (2013) Hydrogen-treated commercial WO3 as an efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. Chem Commun (Camb) 49:5945–5947

    Article  Google Scholar 

  28. Zheng H, Tachibana Y, Kalantar-Zadeh K (2010) Dye-sensitized solar cells based on WO3. Langmuir 26:19148–19152

    Article  Google Scholar 

  29. Smestad GP, Gratzel M (1998) Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline. J Chem Educ 75:752

    Article  Google Scholar 

  30. Umar A, Al-Hajry A, Hahn YB, Kim DH (2009) Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochim Acta 54:5358–5362

    Article  Google Scholar 

  31. Cakir AC, Erten-Ela S (2012) Comparison between synthesis techniques to obtain ZnO nanorods and its effect on dye sensitized solar cells. Adv Powder Technol 23:655–660

    Article  Google Scholar 

  32. Cai F, Wang J, Yuan Z, Duan Y (2012) Magnetic-field effect on dye-sensitized ZnO nanorods-based solar cells. J Power Sources 216:269–272

    Article  Google Scholar 

  33. Gonzalez-Valls I, Lira-Cantu M (2010) Effect of testing conditions on the photovoltaic performance of ZnO-based dye sensitized solar cells. Phys Procedia 28–32

  34. Chou C-S, Chou F-C, Ding Y-G, Wu P (2012) The effect of ZnO-coating on the performance of a dye-sensitized solar cell. Sol Energy 86:1435–1442

    Article  Google Scholar 

  35. Sponza L, Goniakowski J, Noguera C (2015) Structural, electronic, and spectral properties of six ZnO bulk polymorphs. Phys Rev B Condens Matter Mater Phys 91(7):075126

  36. Leitner J, Kamrádek M, Sedmidubský D (2013) Thermodynamic properties of rock-salt ZnO. Thermochim Acta 572:1–5

    Article  Google Scholar 

  37. Xie Y, He Y, Irwin PL et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  Google Scholar 

  38. Ursaki VV, Tiginyanu IM, Zalamai VV et al (2004) Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers. Phys Rev B Condens Matter Mater Phys 70:155204

    Article  Google Scholar 

  39. Calleja JM, Cardona M (1977) Resonant Raman scattering in ZnO. Phys Rev B 16:3753–3761

    Article  Google Scholar 

  40. Kumar R, Kumar G, Umar A (2014) Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: a review. Nanosci Nanotechnol Lett 6:631–650

    Article  Google Scholar 

  41. Fang X, Peng L, Shang X, Zhang Z (2011) Controlled synthesis of ZnO branched nanorod arrays by hierarchical solution growth and application in dye-sensitized solar cells. Thin Solid Films 519:6307–6312

    Article  Google Scholar 

  42. Al-Hajry A, Umar A, Hahn YB, Kim DH (2009) Growth, properties and dye-sensitized solar cells-applications of ZnO nanorods grown by low-temperature solution process. Superlattices Microstruct 45:529–534

    Article  Google Scholar 

  43. Ke L, Bin Dolmanan S, Shen L et al (2010) Degradation mechanism of ZnO-based dye-sensitized solar cells. Sol Energy Mater Sol Cells 94:323–326

    Article  Google Scholar 

  44. Lin LY, Yeh MH, Lee CP et al (2013) Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes. Electrochim Acta 88:421–428

    Article  Google Scholar 

  45. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Lee C (2013) Synthesis of garland like ZnO nanorods and their application in dye sensitized solar cells. Mater Lett 92:104–107

    Article  Google Scholar 

  46. Huang QL, Fang L, Chen X, Saleem M (2011) Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells. J Alloys Compd 509:9456–9459

    Article  Google Scholar 

  47. Thambidurai M, Muthukumarasamy N, Velauthapillai D, Lee C (2014) Rosa centifolia sensitized ZnO nanorods for photoelectrochemical solar cell applications. Sol Energy 106:143–150

    Article  Google Scholar 

  48. Raja M, Muthukumarasamy N, Velauthapillai D et al (2014) Studies on bundle like ZnO nanorods for solar cell applications. Sol Energy 106:129–135

    Article  Google Scholar 

  49. Meng Y, Lin Y, Lin Y (2014) Electrodeposition for the synthesis of ZnO nanorods modified by surface attachment with ZnO nanoparticles and their dye-sensitized solar cell applications. Ceram Int 40:1693–1698

    Article  Google Scholar 

  50. Chae Y, Kim SJ, Kim JH, Kim E (2015) Metal-free organic-dye-based flexible dye-sensitized solar textiles with panchromatic effect. Dye Pigment 113:378–389

    Article  Google Scholar 

  51. Fang X, Li Y, Zhang S et al (2014) The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells. Sol Energy 105:14–19

    Article  Google Scholar 

  52. Song H, Jeong H, Song J et al (2014) Fabrication of glass-free photoelectrodes for dye-sensitized solar cells (DSSCs) by transfer method using ZnO nanorods sacrificial layer. Mater Lett 132:27–30

    Article  Google Scholar 

  53. Yun W, Cho IS, Sohn S, Oh S (2012) Effects of heat treatment on the dye adsorption of ZnO nanorods for dye-sensitized solar cells. J Korean Phys Soc 61:1453–1456

    Article  Google Scholar 

  54. Zhu S, Shan L, Tian X et al (2014) Hydrothermal synthesis of oriented ZnO nanorod-nanosheets hierarchical architecture on zinc foil as flexible photoanodes for dye-sensitized solar cells. Ceram Int 40:11663–11670

    Article  Google Scholar 

  55. Pawar RC, Shaikh JS, Tarwal NL et al (2012) Surfactant mediated growth of ZnO nanostructures and their dye sensitized solar cell properties. J Mater Sci Mater Electron 23:349–355

    Article  Google Scholar 

  56. Wang CX, Zhang XD, Wang DF et al (2010) Synthesis of nanostructural ZnO using hydrothermal method for dye-sensitized solar cells. Sci China Technol Sci 53:1146–1149

    Article  Google Scholar 

  57. Sudhagar P, Kumar RS, Jung JH et al (2011) Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells. Mater Res Bull 46:1473–1479

    Article  Google Scholar 

  58. Chung J, Lee J, Lim S (2010) Annealing effects of ZnO nanorods on dye-sensitized solar cell efficiency. Phys B Condens Matter 405:2593–2598

    Article  Google Scholar 

  59. Chen W, Zhang H, Hsing IM, Yang S (2009) A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcination. Electrochem Commun 11:1057–1060

    Article  Google Scholar 

  60. Jana A, Das PP, Agarkar SA, Sujatha Devi P (2014) A comparative study on the dye sensitized solar cell performance of solution processed ZnO. Sol Energy 102:143–151

    Article  Google Scholar 

  61. Xi Y, Wu WZ, Fang H, Hu CG (2012) Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells. J Alloys Compd 529:163–168

    Article  Google Scholar 

  62. Liu Z, Liu C, Ya J, Lei E (2011) Controlled synthesis of ZnO and TiO2 nanotubes by chemical method and their application in dye-sensitized solar cells. Renew Energy 36:1177–1181

    Article  Google Scholar 

  63. Ameen S, Akhtar MS, Kim YS et al (2011) Influence of seed layer treatment on low temperature grown ZnO nanotubes: performances in dye sensitized solar cells. Electrochim Acta 56:1111–1116

    Article  Google Scholar 

  64. Chen L, Li X, Qu L et al (2014) Facile and fast one-pot synthesis of ultra-long porous ZnO nanowire arrays for efficient dye-sensitized solar cells. J Alloys Compd 586:766–772

    Article  Google Scholar 

  65. Lupan O, Guérin VM, Tiginyanu IM et al (2010) Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J Photochem Photobiol A Chem 211:65–73

    Article  Google Scholar 

  66. Guérin VM, Rathousky J, Pauporté T (2012) Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells. Sol Energy Mater Sol Cells 102:8–14

    Article  Google Scholar 

  67. Qin Z, Zhang G, Liao Q et al (2012) Influences of low temperature thermal treatment on ZnO nanowire arrays and nanoparticles based flexible dye-sensitized solar cells. Colloids Surfaces A Physicochem Eng Asp 402:127–131

    Article  Google Scholar 

  68. Fu YS, Sun J, Xie Y et al (2010) ZnO hierarchical nanostructures and application on high-efficiency dye-sensitized solar cells. Mater Sci Eng B Solid-State Mater Adv Technol 166:196–202

    Article  Google Scholar 

  69. Kim YT, Park J, Kim S et al (2012) Fabrication of hierarchical ZnO nanostructures for dye-sensitized solar cells. Electrochim Acta 78:417–421

    Article  Google Scholar 

  70. Tian Y, Hu C, Wu Q et al (2011) Investigation of the fill factor of dye-sensitized solar cell based on ZnO nanowire arrays. Appl Surf Sci 258:321–326

    Article  Google Scholar 

  71. Nayeri FD, Soleimani EA, Salehi F (2013) Synthesis and characterization of ZnO nanowires grown on different seed layers: the application for dye-sensitized solar cells. Renew Energy 60:246–255

    Article  Google Scholar 

  72. Suh DI, Lee SY, Kim TH et al (2007) The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem Phys Lett 442:348–353

    Article  Google Scholar 

  73. Li S, Zhang X, Jiao X, Lin H (2011) One-step large-scale synthesis of porous ZnO nanofibers and their application in dye-sensitized solar cells. Mater Lett 65:2975–2978

    Article  Google Scholar 

  74. Zhu S, Chen X, Zuo F et al (2013) Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells. J Solid State Chem 197:69–74

    Article  Google Scholar 

  75. Gao R, Liang Z, Tian J et al (2013) ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells. Nano Energy 2:40–48

    Article  Google Scholar 

  76. Guo H, He X, Hu C et al (2014) Effect of particle size in aggregates of ZnO-aggregate-based dye-sensitized solar cells. Electrochim Acta 120:23–29

    Article  Google Scholar 

  77. Jia W, Dang S, Liu H et al (2013) Submicrometer-scale ZnO composite aggregate arrays photoanodes for dye-sensitized solar cells. J Mater Sci Technol 29:415–418

    Article  Google Scholar 

  78. Zheng YZ, Ding H, Liu Y et al (2014) In situ hydrothermal growth of hierarchical ZnO nanourchin for high-efficiency dye-sensitized solar cells. J Power Sources 254:153–160

    Article  Google Scholar 

  79. Liu Z, Li Y, Liu C et al (2011) Performance of ZnO dye-sensitized solar cells with various nanostructures as anodes. Solid State Sci 13:1354–1359

    Article  Google Scholar 

  80. Bu IYY, Cole MT (2013) One-pot synthesis of intercalating ZnO nanoparticles for enhanced dye-sensitized solar cells. Mater Lett 90:56–59

    Article  Google Scholar 

  81. Lu LL, Li RJ, Fan K, Peng TY (2010) Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol Energy 84:844–853

    Article  Google Scholar 

  82. Li H, Bai J, Feng B et al (2013) Dye-sensitized solar cells with a tri-layer ZnO photo-electrode. J Alloys Compd 578:507–511

    Article  Google Scholar 

  83. Rani S, Suri P, Shishodia PK, Mehra RM (2008) Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:1639–1645

    Article  Google Scholar 

  84. Al-Kahlout A (2015) Thermal treatment optimization of ZnO nanoparticles-photoelectrodes for high photovoltaic performance of dye-sensitized solar cells. J Assoc Arab Univ Basic Appl Sci 17:66–72

    Google Scholar 

  85. Devabharathi V, Palanisamy KL, Meenakshi Sundaram N (2014) Influence of pH on the performance of ZnO nanocrystal based dye sensitized solar cells. Superlattices Microstruct 75:99–104

    Article  Google Scholar 

  86. Patra AK, Dutta A, Bhaumik A (2014) Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application. J Solid State Chem 215:135–142

    Article  Google Scholar 

  87. Xu J, Fan K, Shi W et al (2014) Application of ZnO micro-flowers as scattering layer for ZnO-based dye-sensitized solar cells with enhanced conversion efficiency. Sol Energy 101:150–159

    Article  Google Scholar 

  88. Umar A, Akhtar MS, Al-Hajry A et al (2012) Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications. Mater Res Bull 47:2407–2414

    Article  Google Scholar 

  89. Dunkel C, Wark M, Oekermann T et al (2013) Electrodeposition of zinc oxide on transparent conducting metal oxide nanofibers and its performance in dye sensitized solar cells. Electrochim Acta 90:375–381

    Article  Google Scholar 

  90. Parthiban R, Balamurugan D, Jeyaprakash BG (2015) Dye-sensitized solar cell based on spray deposited ZnO thin film: performance analysis through DFT approach. Spectrochim Acta Part A Mol Biomol Spectrosc 136:986–992

    Article  Google Scholar 

  91. Lin Y, Yang J, Meng Y (2013) Nanostructured ZnO thin films by SDS-assisted electrodeposition for dye-sensitized solar cell applications. Ceram Int 39:5049–5052

    Article  Google Scholar 

  92. Kushwaha S, Bahadur L (2011) Characterization of some metal-free organic dyes as photosensitizer for nanocrystalline ZnO-based dye sensitized solar cells. Int J Hydrogen Energy 36:11620–11627

    Article  Google Scholar 

  93. Zi M, Zhu M, Chen L et al (2014) ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties. Ceram Int 40:7965–7970

    Article  Google Scholar 

  94. Suresh S, Pandikumar A, Murugesan S et al (2011) Photovoltaic performance of solid-state solar cells based on ZnO nanosheets sensitized with low-cost metal-free organic dye. Sol Energy 85:1787–1793

    Article  Google Scholar 

  95. Navaneethan M, Archana J, Arivanandhan M, Hayakawa Y (2012) Functional properties of amine-passivated ZnO nanostructures and dye-sensitized solar cell characteristics. Chem Eng J 213:70–77

    Article  Google Scholar 

  96. Baviskar P, Gore R, Ennaoui A, Sankapal B (2014) Cactus architecture of ZnO nanoparticles network through simple wet chemistry: efficient dye sensitized solar cells. Mater Lett 116:91–93

    Article  Google Scholar 

  97. Giannouli M, Spiliopoulou F (2012) Effects of the morphology of nanostructured ZnO films on the efficiency of dye-sensitized solar cells. Renew Energy 41:115–122

    Article  Google Scholar 

  98. Deng J, Zheng YZ, Hou Q et al (2011) Solid-state dye-sensitized hierarchically structured ZnO solar cells. Electrochim Acta 56:4176–4180

    Article  Google Scholar 

  99. Mou J, Zhang W, Fan J et al (2011) Facile synthesis of ZnO nanobullets/nanoflakes and their applications to dye-sensitized solar cells. J Alloys Compd 509:961–965

    Article  Google Scholar 

  100. Umar A (2009) Growth of comb-like ZnO nanostructures for Dye-sensitized solar cells applications. Nanoscale Res Lett 4:1004–1008

    Article  Google Scholar 

  101. Rouhi J, Mamat MH, Ooi CHR et al (2015) High-performance dye-sensitized solar cells based on morphology-controllable synthesis of ZnO–ZnS heterostructure nanocone photoanodes. PLoS ONE 10:e0123433. doi:10.1371/journal.pone.0123433

    Article  Google Scholar 

  102. Shimpi P, Gao P-X, Goberman DG, Ding Y (2009) Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays. Nanotechnology 20:125608

    Article  Google Scholar 

  103. Wrobel G, Piech M, Gao P-X, Dardona S (2012) Direct synthesis of ZnO nanorod field emitters on metal electrodes. Cryst Growth Des 12:5051–5055

    Article  Google Scholar 

  104. Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466

    Article  Google Scholar 

  105. Greene LE, Law M, Goldberger J et al (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034

    Article  Google Scholar 

  106. Tan Y, Xue X, Peng Q et al (2007) Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett 7:3723–3728

    Article  Google Scholar 

  107. Greene LE, Yuhas BD, Law M et al (2006) Solution-grown zinc oxide nanowires. Inorg Chem 45:7535–7543

    Article  Google Scholar 

  108. Baek SH, Noh BY, Shin JK, Kim JH (2012) Optical and photovoltaic properties of silicon wire solar cells with controlled ZnO nanorods antireflection coating. J Mater Sci 47:4138–4145. doi:10.1007/s10853-012-6268-7

    Article  Google Scholar 

  109. Xiang F, Jianning D, Ningyi Y et al (2013) Morphology controlled synthesis of ZnO nanostructures on different substrates. Curr Nanosci 9:341–345

    Article  Google Scholar 

  110. Sounart TL, Liu J, Voigt JA et al (2007) Secondary nucleation and growth of ZnO. J Am Chem Soc 129:15786–15793

    Article  Google Scholar 

  111. Kim BH, Kim MS, Park KT et al (2003) Characteristics and field emission of conducting poly (3,4-ethylenedioxythiophene) nanowires. Appl Phys Lett 83:539–541

    Article  Google Scholar 

  112. Law M, Greene LE, Johnson JC et al (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459

    Article  Google Scholar 

  113. Hu X, Masuda Y, Ohji T, Kato K (2009) Polyethylenimine-guided self-twin zinc oxide nanoarray assemblies. Cryst Growth Des 9:3598–3602

    Article  Google Scholar 

  114. Joo J, Chow BY, Prakash M et al (2011) Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. Nat Mater 10:596–601

    Article  Google Scholar 

  115. Kwok WM, Djurišić AB, Leung YH et al (2006) Influence of annealing on stimulated emission in ZnO nanorods. Appl Phys Lett 89:183112

    Article  Google Scholar 

  116. Maiti UN, Nandy S, Karan S et al (2008) Enhanced optical and field emission properties of CTAB-assisted hydrothermal grown ZnO nanorods. Appl Surf Sci 254:7266–7271

    Article  Google Scholar 

  117. Sun XM, Chen X, Deng ZX, Li YD (2003) A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater Chem Phys 78:99–104

    Article  Google Scholar 

  118. Elias J, Tena-Zaera R, Wang GY, Lévy-Clément C (2008) Conversion of ZnO nanowires into nanotubes with tailored dimensions. Chem Mater 20:6633–6637

    Article  Google Scholar 

  119. Vayssieres L, Beermann N, Lindquist SE, Hagfeldt A (2001) Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides. Chem Mater 13:233–235

    Article  Google Scholar 

  120. Xi Y, Song J, Xu S et al (2009) Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. J Mater Chem 19:9260

    Article  Google Scholar 

  121. Xu S, Adiga N, Ba S et al (2009) Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3:1803–1812

    Article  Google Scholar 

  122. Xu C, Wu J, Desai UV, Gao D (2012) High-efficiency solid-state dye-sensitized solar cells based on TiO(2)-coated ZnO nanowire arrays. Nano Lett 12:2420–2424

    Article  Google Scholar 

  123. Chen L-Y, Yin Y-T (2013) Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells. Nanoscale 5:1777–1780

    Article  Google Scholar 

  124. Ling T, Song JG, Chen XY et al (2013) Comparison of ZnO and TiO2 nanowires for photoanode of dye-sensitized solar cells. J Alloys Compd 546:307–313

    Article  Google Scholar 

  125. Hoang S, Gao P (2016) Nanowire array structures for photocatalytic energy conversion and utilization: a review of design concepts, assembly and integration, and function enabling. Adv Energy Mater 2016:1600683

    Article  Google Scholar 

  126. Demes T, Ternon C, Riassetto D et al (2016) Comprehensive study of hydrothermally grown ZnO nanowires. J Mater Sci 51:10652–10661. doi:10.1007/s10853-016-0287-8

    Article  Google Scholar 

  127. Gao Y, Nagai M, Chang TC, Shyue JJ (2007) Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst Growth Des 7:2467–2471

    Article  Google Scholar 

  128. Cho JW, Lee CS, Il Lee K et al (2012) Morphology and electrical properties of high aspect ratio ZnO nanowires grown by hydrothermal method without repeated batch process. Appl Phys Lett 101:083905

    Article  Google Scholar 

  129. Xu CK, Shin P, Cao LL, Gao D (2010) Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C 114:125–129

    Article  Google Scholar 

  130. Qiu J, Li X, Zhuge F et al (2010) Solution-derived 40 microm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology 21:195602

    Article  Google Scholar 

  131. Chen L-Y, Yin Y-T (2012) Facile continuous flow injection process for high quality long ZnO nanowire arrays synthesis. Cryst Growth Des 12:1055–1059

    Article  Google Scholar 

  132. Wang L, Tsan D, Stoeber B, Walus K (2012) Substrate-free fabrication of self-supporting ZnO nanowire arrays. Adv Mater 24:3999–4004

    Article  Google Scholar 

  133. Wang Z, Qian X-F, Yin J, Zhu Z-K (2004) Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route. Langmuir 20:3441–3448

    Article  Google Scholar 

  134. Dick KA, Deppert K, Mårtensson T et al (2004) Growth of GaP nanotree structures by sequential seeding of 1D nanowires. J Cryst Growth 272:131–137

    Article  Google Scholar 

  135. Wang D, Qian F, Yang C et al (2004) Rational growth of branched and hyperbranched nanowire structures. Nano Lett 4:871–874

    Article  Google Scholar 

  136. Baxter JB, Aydil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells 90:607–622

    Article  Google Scholar 

  137. Guo M, Diao P, Wang X, Cai S (2005) The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J Solid State Chem 178:3210–3215

    Article  Google Scholar 

  138. Galoppini E, Rochford J, Chen H et al (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110:16159–16161

    Article  Google Scholar 

  139. Zhang Q, Chou TP, Russo B et al (2008) Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv Funct Mater 18:1654–1660

    Article  Google Scholar 

  140. Zhang Q, Park K, Xi J et al (2011) Recent progress in dye-sensitized solar cells using nanocrystallite aggregates. Adv Energy Mater 1:988–1001

    Article  Google Scholar 

  141. Kanmani S, Ramachandran K (2013) Role of aqueous ammonia on the growth of ZnO nanostructures and its influence on solid-state dye sensitized solar cells. J Mater Sci 48:2076–2091. doi:10.1007/s10853-012-6981-2

    Article  Google Scholar 

  142. Chou TP, Zhang Q, Fryxell GE, Cao GZ (2007) hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19:2588–2592

    Article  Google Scholar 

  143. Wang M, Anghel AM, Marsan B et al (2009) CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J Am Chem Soc 131:15976–15977

    Article  Google Scholar 

  144. Hod I, González-Pedro V, Tachan Z et al (2011) Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process. J Phys Chem Lett 2:3032–3035

    Article  Google Scholar 

  145. Tian J, Cao G (2013) Semiconductor quantum dot-sensitized solar cells. Nano Rev 4:1–8

    Google Scholar 

  146. Zheng L, Sun X, Chen L et al (2016) One-step in situ growth of Co9S8 on conductive substrate as an efficient counter electrode for dye-sensitized solar cells. J Mater Sci 51:4150–4159. doi:10.1007/s10853-016-9738-5

    Article  Google Scholar 

  147. Tan Z, Zhao B, Shen P et al (2011) Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. J Mater Sci 46:7482–7488. doi:10.1007/s10853-011-5718-y

    Article  Google Scholar 

  148. Singh S, Raj T, Singh A, Kaur N (2016) Optoelectronic and photovoltaic performances of pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. J Nanosci Nanotechnol 16:5975–5983

    Article  Google Scholar 

  149. Lee C-P, Li C-T, Fan M-S et al (2016) Microemulsion-assisted zinc oxide synthesis: morphology control and its applications in photoanodes of dye-sensitized solar cells. Electrochim Acta 210:483–491

    Article  Google Scholar 

  150. Lee CP, Chen PW, Li CT et al (2016) ZnO double layer film with a novel organic sensitizer as an efficient photoelectrode for dye-sensitized solar cells. J Power Sources 325:209–219

    Article  Google Scholar 

  151. Hu W, Yu P, Zhang Z et al (2017) Theoretical study of YD2-o-C8-based derivatives as promising sensitizers for dye-sensitized solar cells. J Mater Sci 52(3):1235–1245. doi:10.1007/s10853-016-0364-z

  152. Selopal GS, Wu H-P, Lu J et al (2016) Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Sci Rep 6:18756

    Article  Google Scholar 

  153. Wang S, Sina M, Parikh P et al (2016) Role of 4-tert-Butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano Lett 16(9):5594–5600. doi:10.1021/acs.nanolett.6b02158

    Article  Google Scholar 

  154. Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162–169

    Article  Google Scholar 

  155. Wang M, Chamberland N, Breau L et al (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2:385–389

    Article  Google Scholar 

  156. Fan J, Hao Y, Cabot A et al (2013) Cobalt(II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells. ACS Appl Mater Interfaces 5:1902–1906

    Article  Google Scholar 

  157. Kashif MK, Nippe M, Duffy NW et al (2013) Stable dye-sensitized solar cell electrolytes based on cobalt(ii)/(iii) complexes of a hexadentate pyridyl ligand. Angew Chemie Int Ed 52:5527–5531

    Article  Google Scholar 

  158. Tétreault N, Grätzel M (2012) Novel nanostructures for next generation dye-sensitized solar cells. Energy Environ Sci 5:8506

    Article  Google Scholar 

  159. Zhang Z, Chen P, Murakami TN et al (2008) The 2,2,6,6-Tetramethyl-1-piperidinyloxy radical: an efficient, iodine- free redox mediator for dye-sensitized solar cells. Adv Funct Mater 18:341–346

    Article  Google Scholar 

  160. Yao Z, Zhang M, Wu H et al (2015) Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 137:3799–3802

    Article  Google Scholar 

  161. Teng C, Yang X, Yuan C et al (2009) Two novel carbazole dyes for dye-sensitized solar cells with open-circuit voltages up to 1 v based on Br/Br3 electrolytes. Org Lett 11:5542–5545

    Article  Google Scholar 

  162. Oskam G, Bergeron BV, Meyer GJ, Searson PC (2001) Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J Phys Chem B 105:6867–6873

    Article  Google Scholar 

  163. Wang P, Zakeeruddin SM, Moser JE et al (2004) A solvent-free, SeCN/(SeCN) 3 based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J Am Chem Soc 126:7164–7165

    Article  Google Scholar 

  164. Jose R, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92:289–301

    Article  Google Scholar 

  165. Sze SM, Lee M-K (2002) Semiconductor devices: physics and technology, 2nd edn. Wiley, New York

  166. Harrington DA, Van Den Driessche P (2011) Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim Acta 56:8005–8013

    Article  Google Scholar 

  167. Kern R, Sastrawan R, Ferber J et al (2002) Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 47:4213–4225

    Article  Google Scholar 

  168. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153

    Article  Google Scholar 

  169. Wang Q, Moser J-E, Grätzel M (2005) Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J Phys Chem B 109:14945–14953

    Article  Google Scholar 

  170. Pajkossy T (1994) Impedance of rough capacitive electrodes. J Electroanal Chem 364:111–125

    Article  Google Scholar 

  171. Anta JA, Guillén E, Tena-Zaera R (2012) ZnO-based dye-sensitized solar cells. J Phys Chem C 116:11413–11425

    Article  Google Scholar 

  172. Lizama-Tzec FI, Garcia-Rodriguez R, Rodriguez-Gattorno G et al (2016) Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Adv 6:37424–37433

    Article  Google Scholar 

  173. Tricoli A, Nasiri N, Chen H et al (2016) Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Sol Energy 136:553–559

    Article  Google Scholar 

  174. Sutthana S, Wongratanaphisan D, Gardchareon A et al (2015) Enhancement of ZnO dye-sensitized solar cell performance by modifying photoelectrode using two-steps coating-etching process. Energy Procedia 79:1021–1026

    Article  Google Scholar 

  175. Sutthana S, Wongratanaphisan D Gardchareon, Phadungdhitidhada A, Ruankham S, Choopun P (2016) Enhancement of ZnO dye-sensitized solar cell performance by modifying photoelectrodes using an acid vapor texturing process. Surf Coat Technol 306:30–34

    Article  Google Scholar 

  176. Chang R, Ithisuphalap K, Kretzschmar I (2016) Impact of particle shape on electron transport and lifetime in zinc oxide nanorod-based dye-sensitized solar cells. AIMS Mater Sci 3:51–65

    Article  Google Scholar 

  177. Tao P, Guo W, Du J et al (2016) Continuous wet-process growth of ZnO nanoarrays for wire-shaped photoanode of dye-sensitized solar cell. J Colloid Interface Sci 478:172–180

    Article  Google Scholar 

  178. Chen HS, Yu WC, Chang WC, Lu YW (2016) Olive-shaped ZnO nanocrystallite aggregates as bifunctional light scattering materials in double-layer photoanodes for dye-sensitized solar cells. Electrochim Acta 187:655–661

    Article  Google Scholar 

  179. Kang X, Jia C, Wan Z et al (2015) A novel tri-layered photoanode of hierarchical ZnO microspheres on 1D ZnO nanowire arrays for dye-sensitized solar cells. Rsc Adv 5:16678–16683

    Article  Google Scholar 

  180. Chanta E, Wongratanaphisan D, Gardchareon A et al (2015) Effect of ZnO double layer as anti-reflection coating layer in ZnO dye-sensitized solar cells. Energy Procedia 79:879–884

    Article  Google Scholar 

  181. Hu J, Xie Y, Bai T et al (2015) A novel triple-layer zinc oxide/carbon nanotube architecture for dye-sensitized solar cells with excellent power conversion efficiency. J Power Sources 286:175–181

    Article  Google Scholar 

  182. Choudhury MSH, Kishi N, Soga T (2016) Compression of ZnO nanoparticle films at elevated temperature for flexible dye-sensitized solar cells. J Alloys Compd 656:476–480

    Article  Google Scholar 

  183. Marimuthu T, Anandhan N, Thangamuthu R et al (2016) Synthesis of ZnO nanowire arrays on ZnO–TiO2 mixed oxide seed layer for dye sensitized solar cell applications. J Alloys Compd 677:211–218

    Article  Google Scholar 

  184. Ito S, Murakami TN, Comte P et al (2008) Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516:4613–4619

    Article  Google Scholar 

  185. Žídek K, Zheng K, Ponseca CS et al (2012) Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study. J Am Chem Soc 134:12110–12117

    Article  Google Scholar 

  186. Lu MY, Tsai CY, Chen HA et al (2016) Plasmonic enhancement of Au nanoparticle-embedded single-crystalline ZnO nanowire dye-sensitized solar cells. Nano Energy 20:264–271

    Article  Google Scholar 

  187. Chen ZH, Tang YB, Liu CP et al (2009) Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for schottky barrier photovoltaic cells. J Phys Chem C 113:13433–13437

    Article  Google Scholar 

  188. Wijeratne K, Akilavasan J, Alamoud A, Bandara J (2015) Characterizing the role of Li ion insertion into ZnO nanostructures in improving photovoltaic performance of dye-sensitized solar cells. Trans Electron Opt 1:8–13

    Google Scholar 

  189. Kawawaki T, Wang H, Kubo T et al (2015) Efficiency enhancement of PbS quantum Dot/ZnO nanowire bulk-heterojunction solar cells by plasmonic silver nanocubes. ACS Nano 9:4165–4172

    Article  Google Scholar 

  190. Tripathi SK, Rani M, Singh N (2015) ZnO: Ag and TZO: Ag plasmonic nanocomposite for enhanced dye sensitized solar cell performance. Electrochim Acta 167:179–186

    Article  Google Scholar 

  191. Yang Q, Duan J, Yang P, Tang Q (2016) Counter electrodes from platinum alloy nanotube arrays with ZnO nanorod templates for dye-sensitized solar cells. Electrochim Acta 190:648–654

    Article  Google Scholar 

  192. Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23:3381–3399

    Article  Google Scholar 

  193. Morandeira A, López-Duarte I, Martínez-Díaz MV et al (2007) Slow electron injection on Ru-phthalocyanine sensitized TiO2. J Am Chem Soc 129:9250–9251

    Article  Google Scholar 

  194. Hu B, Yan L, Shao M (2009) Magnetic-field effects in organic semiconducting materials and devices. Adv Mater 21:1500–1516

    Article  Google Scholar 

  195. Park K, Zhang Q, Garcia BB, Cao G (2011) Effect of annealing temperature on TiO2–ZnO core–shell aggregate photoelectrodes of dye-sensitized solar cells. J Phys Chem C 115:4927–4934

    Article  Google Scholar 

  196. Wu D, Gao Z, Xu F et al (2013) Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. CrystEngComm 15:1210–1217

    Article  Google Scholar 

  197. Hu Y, Yan X, Gu Y et al (2015) Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl Surf Sci 339:122–127

    Article  Google Scholar 

  198. Jézéquel D, Guenot J, Jouini N, Fiévet F (1995) Submicrometer zinc oxide particles: elaboration in polyol medium and morphological characteristics. J Mater Res 10:77–83

    Article  Google Scholar 

  199. Zhang Q, Chou TP, Russo B et al (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chemie Int Ed 47:2402–2406

    Article  Google Scholar 

  200. Huang L, Jiang L, Wei M (2010) Metal-free indoline dye sensitized solar cells based on nanocrystalline Zn2SnO4. Electrochem Commun 12:319–322

    Article  Google Scholar 

  201. Matsui M, Ito A, Kotani M et al (2009) The use of indoline dyes in a zinc oxide dye-sensitized solar cell. Dye Pigment 80:233–238

    Article  Google Scholar 

  202. Chen G, Zheng K, Mo X et al (2010) Metal-free indoline dye sensitized zinc oxide nanowires solar cell. Mater Lett 64:1336–1339

    Article  Google Scholar 

  203. Sakuragi Y, Wang XF, Miura H et al (2010) Aggregation of indoline dyes as sensitizers for ZnO solar cells. J Photochem Photobiol A Chem 216:1–7

    Article  Google Scholar 

  204. Jose R, Kumar A, Thavasi V et al (2008) Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells. Appl Phys Lett 93:023125

    Article  Google Scholar 

  205. Liu X, Wang G, Ng A et al (2015) Towards low temperature processed ZnO dye-sensitized solar cells. Appl Surf Sci 357:2169–2175

    Article  Google Scholar 

Download references

Funding sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Umar or Girish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Umar, A., Kumar, G. et al. Zinc oxide nanostructure-based dye-sensitized solar cells. J Mater Sci 52, 4743–4795 (2017). https://doi.org/10.1007/s10853-016-0668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0668-z

Keywords

Navigation