Skip to main content
Log in

Simultaneous size and luminescence control of KZnF3:Yb3+/Er3+ nanoparticles by incorporation of Mn2+

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A strategy is demonstrated for simultaneous size and color tuning of KZnF3:Yb3+/Er3+ nanocrystals through transition metal Mn2+ doping. The experimental results indicate that the introduction of Mn2+ into the KZnF3:Yb3+/Er3+ reaction system facilitates the decrease of the crystal size. Moreover, in the case of a high concentration of Mn2+ doping, the downshifting (DS) and upconversion (UC) luminescence all show a single red band emission. In this work, we mainly investigate the DS and UC energy transfer process among Mn2+/Yb3+/Er3+ in KZnF3 nanocrystals by the detection and analysis of the absorption, excitation, emission, and transient fluorescence spectra. The results show that both Mn2+ and Yb3+ ions can decrease the green emission while improving the red luminescence of Er3+. This DS and UC single red color tuning is significant for the application of nanoparticles in light conversion, biological labeling, or plant photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gai S, Li C, Yang P, Lin J (2013) Review: recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114:2343–2389

    Article  Google Scholar 

  2. Xie Y, He W, Li F, Perera TSH, Gan L, Han Y, Wang X, Li S, Dai H (2016) Luminescence enhanced Eu3+/Gd3+ co-doped hydroxyapatite nanocrystals as imaging agents in vitro and in vivo. ACS Appl Mater Interfaces 8:10212–10219

    Article  Google Scholar 

  3. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130:5642–5643

    Article  Google Scholar 

  4. Liu M, Liu H, Sun S, Li X, Zhou Y, Hou Z, Lin J (2014) Multifunctional hydroxyapatite/Na (Y/Gd) F4: Yb3+, Er3+ composite fibers for drug delivery and dual modal imaging. Langmuir 30:1176–1182

    Article  Google Scholar 

  5. Dai Y, Xiao H, Liu J, Yuan Q, Ma P, Yang D, Li C, Cheng Z, Hou Z et al (2013) In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconversion nanoparticles. J Am Chem Soc 135:18920–18929

    Article  Google Scholar 

  6. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839–1854

    Article  Google Scholar 

  7. Yang LW, Han HL, Zhang YY, Zhang JX (2009) White emission by frequency up-conversion in Yb3+–Ho3+–Tm3+ triply doped hexagonal NaYF4 nanorods. J Phys Chem C 113:18995–18999

    Article  Google Scholar 

  8. Liu G (2015) Review: advances in the theoretical understanding of photon upconversion in rare-earth activated nanophosphors. Chem Soc Rev 44:1635–1652

    Article  Google Scholar 

  9. Dong H, Sun LD, Yan CH (2015) Energy transfer in lanthanide upconversion studies for extended optical applications. Chem Soc Rev 44:1608–1634

    Article  Google Scholar 

  10. Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H (2015) Tuning red upconversion emission in single LiYF4:Yb3+/Ho3+ microparticle. J Phys Chem C 119:2349–2355

    Google Scholar 

  11. Xie J, Yang X, Shao H, Ye J, He Y, Fu J, Gao C, Gou Z (2016) Simultaneous mechanical property and biodegradation improvement of wollastonite bioceramic through magnesium dilute doping. J Mech Behav Biomed 54:60–71

    Article  Google Scholar 

  12. Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TXT, Yang Y, Ding Y, Wang X et al (2006) Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 312:1504–1508

    Article  Google Scholar 

  13. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ dopant-controlled synthesis of NaYF4: Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24:1226–1231

    Article  Google Scholar 

  14. He E, Zheng H, Gao W, Tu Y, Lu Y, Tian H, Li G (2014) Enhancement and regulation of fluorescence emission from NaYF4: Yb3+, Er3+ nanocrystals by codoping Mn2+ ions. J Nanosci Nanotechnol 14:4139–4146

    Article  Google Scholar 

  15. Wang YL, Zhang JP, Han JB, Hao ZH, Wang QQ (2015) High magnetic field and temperature tuning of up-conversion luminescence in Mn2+-doped (Er3+/Yb3+): NaYF4. J Appl Phys 117:083903

    Article  Google Scholar 

  16. Bai Z, Lin H, Johnson J, Gui SCR, Imakita K, Montazami R, Fujii M, Hashemi N (2014) The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures. J Mater Chem C 2:1736–1741

    Article  Google Scholar 

  17. Tian D, Gao D, Chong B, Liu X (2015) Upconversion improvement by the reduction of Na+-vacancies in Mn2+ doped hexagonal NaYbF4: Er3+ nanoparticles. Dalton Trans 44:4133–4140

    Article  Google Scholar 

  18. Rao L, Lu W, Zeng T, Yi Z, Wang H, Liu H, Zeng S (2014) Sub-10 nm BaLaF5:Mn/Yb/Er nanoprobes for dual-modal synergistic in vivo upconversion luminescence and X-ray bioimaging. J Mater Chem B 2:6527–6533

    Article  Google Scholar 

  19. Wang W, Gao H, Mao Y (2015) Highly matched spectrum needed for photosynthesis in Ce3+/Er3+/Yb3+ tri-doped oxyfluoride glass ceramics. J Alloys Compd 648:75–78

    Article  Google Scholar 

  20. Song E, Chen Z, Wu M, Ding S, Ye S, Zhou S, Zhang Q (2016) Room-temperature wavelength-tunable single-band upconversion luminescence from Yb3+/Mn2+ codoped fluoride perovskites ABF3. Adv Opt Mater 4:798–806

    Article  Google Scholar 

  21. Shi F, Zhao Y (2014) Sub-10 nm and monodisperse β-NaYF4: Yb, Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence. J Mater Chem C 2:2198–2203

    Article  Google Scholar 

  22. Song EH, Ding S, Wu M, Ye S, Xiao F, Dong GP, Zhang QY (2013) Temperature-tunable upconversion luminescence of perovskite nanocrystals KZnF3:Yb3+, Mn2+. J Mater Chem C 1:4209–4215

    Article  Google Scholar 

  23. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  Google Scholar 

  24. Yu I, Senna M (1995) Effects of Mn2+ distribution in Cu-modified ZnS on the concentration quenching of electroluminescence brightness. Appl Phys Lett 66:424–426

    Article  Google Scholar 

  25. Xu D, Liu C, Yan J, Yang S, Zhang Y (2015) Understanding energy transfer mechanisms for tunable emission of Yb3+–Er3+ codoped GdF3 nanoparticles: concentration-dependent luminescence by near-infrared and violet excitation. J Phys Chem C 119:6852–6860

    Article  Google Scholar 

  26. Gao G, Wondraczek L (2013) Near-infrared down-conversion in Mn2+–Yb3+ co-doped Zn2GeO. J Mater Chem C 1:1952–1958

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 16HASTIT043), the Science and Technology Research Project of Henan Province (No. 142102210389), and the National Science Foundation of China (Grant No. 21103043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Yi, M., Gao, H. et al. Simultaneous size and luminescence control of KZnF3:Yb3+/Er3+ nanoparticles by incorporation of Mn2+ . J Mater Sci 52, 2673–2683 (2017). https://doi.org/10.1007/s10853-016-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0558-4

Keywords

Navigation