Skip to main content
Log in

Dopamine-modified poly(amino acid): an efficient near-infrared photothermal therapeutic agent for cancer therapy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Under the inspiration of polydopamine melanin, a new dopamine-modified poly(aspartic acid) derivative, poly(α,β-(N-(3,4-dihydroxyphenylethyl)-l-aspartamide-co-α,β-N-(2-hydroxyethyl)-l-aspartamide) (PDAEA), was successfully synthesized by successive aminolysis reactions of polysuccinimide with dopamine and ethanolamine. The mixtures composed of PDAEA and FeCl3 exhibited an excellent photothermal property under the irradiation of near-infrared (NIR) laser. The interactions between PDAEA and FeCl3 were investigated by ultraviolet–visible (UV–Vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, and visual colorimetric measurements. Additionally, PDAEA could interact with Fe3+ in water to form spherical nanostructures with a size of 116 nm, apt to aggregate at the tumor site via the enhanced permeability and retention effect (EPR effect), implying that toxic and side effects of traditional therapy might be reduced using this method. MTT assay demonstrated both PDAEA and the obtained complex products possessed good cytocompatibility to NIH-3T3 cells (more than 90 % cell viability). The effect of photothermal therapy in vitro was also evaluated qualitatively under certain conditions using an inverted fluorescence microscope. All the results indicated that the dopamine-modified poly(aspartic acid) derivative was a promising candidate as an efficient NIR photothermal therapeutic agent for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Parola P (2013) The return of the big three killers. Clin Microbiol Infec 19:887–888

    Article  Google Scholar 

  2. Yoo D, Lee J, Shin T, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44:863–874

    Article  Google Scholar 

  3. American Cancer Society (2011) Global cancer facts & figures, 2nd edn. American Cancer Society, Atlanta

    Google Scholar 

  4. Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44:853–862

    Article  Google Scholar 

  5. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Article  Google Scholar 

  6. Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9

    Article  Google Scholar 

  7. Liu J, Han J, Kang Z, Golamaully R, Xu N, Li H, Han X (2014) In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe. Nanoscale 6:5770–5776

    Article  Google Scholar 

  8. Yang K, Xu H, Cheng L, Sun C, Wang J, Liu Z (2012) In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv Mater 24:5586–5592

    Article  Google Scholar 

  9. Fitzgerald M, Hodgetts S, Heuvel CVD, Natoli R, Hart NS, Valter K, Harvey AR, Vink R, Provis J, Dunlop SA (2013) Red/near-infrared irradiation therapy for treatment of central nervous system injuries and disorders. Rev Neurosci 24:205–226

    Google Scholar 

  10. Chen S, Lin S, Lai M, Peng C, Lai C (2013) Therapeutic effects of near-infrared radiation on chronic neck pain. J Exp Clin Med 5:131–135

    Article  Google Scholar 

  11. Huang P, Gao Y, Lin J, Hu H, Liao H, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X (2015) Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9:9517–9527

    Article  Google Scholar 

  12. Choi WI, Kim J, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5:1995–2003

    Article  Google Scholar 

  13. Burke AR, Singh RN, Carroll DL, Wood JCS, D’Agostino RB Jr, Ajayan PM, Torti FM, Torti SV (2012) The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 33:2961–2970

    Article  Google Scholar 

  14. Maeda H, Wu J, Sawa T, Matsumura Y, Horic K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  Google Scholar 

  15. Jaque D, Maestro LM, Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, Rodrigueza EM, Sole JG (2014) Nanoparticles for photothermal therapies. Nanoscale 6:9494–9530

    Article  Google Scholar 

  16. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  17. Tong L, Zhao Y, Huff TB, Hansen MN, Wei A, Cheng J (2007) Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv Mater 19:3136–3141

    Article  Google Scholar 

  18. Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z, Zhang H, Xia Y, Li X (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7:1318–1322

    Article  Google Scholar 

  19. Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6:811–817

    Article  Google Scholar 

  20. Boca SC, Potara M, Gabudean A, Juhem A, Baldeck PL, Astilean S (2011) Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett 311:131–140

    Article  Google Scholar 

  21. Cheng L, Huang J, Chen HM, Lai T, Yang K, Liu R, Hsiao M, Chen C, Her L, Tsai DP (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22:2244–2253

    Article  Google Scholar 

  22. Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6:28–32

    Article  Google Scholar 

  23. Zhou M, Zhang R, Huang M, Lu W, Song S, Melancon MP, Tian M, Liang D, Li C (2010) A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J Am Chem Soc 132:15351–15358

    Article  Google Scholar 

  24. Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M, Yang S, Wang J, Wang J, Hu J (2011) Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater 23:3542–3547

    Article  Google Scholar 

  25. Markovic ZM, Harhaji-Trajkovic LM, Todorovic-Markovic BM, Kepic DP, Arsikin KM, Jovanovic SP, Pantovic AC, Dramicanin MD, Trajkovic VS (2011) In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 32:1121–1129

    Article  Google Scholar 

  26. Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33:2206–2214

    Article  Google Scholar 

  27. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831

    Article  Google Scholar 

  28. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343

    Article  Google Scholar 

  29. Kvítek O, Siegel J, Hnatowicz V, ŠvorIík V (2013) Noble metal nanostructures influence of structure and environment on their optical properties. J Nanomater 2013:1–15

    Article  Google Scholar 

  30. Li Y, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980

    Article  Google Scholar 

  31. Yang S, Luo J, Zhou Q, Wang H (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for bio-medical purposes. Theranostics 2:271–282

    Article  Google Scholar 

  32. Andrew TL, Swager TM (2008) Reduced photobleaching of conjugated polymer films through small molecule additives. Macromolecules 41:8306–8308

    Article  Google Scholar 

  33. Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WCW, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332

    Article  Google Scholar 

  34. Lovell JF, Jin CS, Huynh E, MacDonald TD, Cao W, Zheng G (2012) Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew Chem Int Ed 51:2429–2433

    Article  Google Scholar 

  35. Simon JD (2000) Spectroscopic and dynamic studies of the epidermal chromophores trans-urocanic acid and eumelanin. Accounts Chem Res 33:307–313

    Article  Google Scholar 

  36. Liu Y, Ai K, Lu L (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114:5057–5115

    Article  Google Scholar 

  37. Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359

    Article  Google Scholar 

  38. Black KC, Yi J, Rivera JG, Zelasko-Leon DC, Messersmith PB (2013) Polydopamine-enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and photothermal therapy. Nanomedicine (Lond) 8:17–28

    Article  Google Scholar 

  39. Zheng R, Wang S, Tian Y, Jiang X, Fu D, Shen S, Yang W (2015) Polydopamine-coated magnetic composite particles with an enhanced photothermal effect. ACS Appl Mater Interfaces 7:15876–15884

    Article  Google Scholar 

  40. Zhang R, Su S, Hu K, Shao L, Deng X, Sheng W, Wu Y (2015) Smart micelle@polydopamine core-shell nanoparticles for highly effective chemo–photothermal combination therapy. Nanoscale 7:19722–19731

    Article  Google Scholar 

  41. Wang X, Zhang J, Wang Y, Wang C, Xiao J, Zhang Q, Cheng Y (2016) Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 81:114–124

    Article  Google Scholar 

  42. Hu Z, Zhao F, Wang Y, Huang Y, Chen L, Li N, Li J, Li Z, Yi G (2014) Facile fabrication of a C60–polydopamine-graphene nanohybrid for single light induced photothermal and photodynamic therapy. Chem Commun 50:10815–10818

    Article  Google Scholar 

  43. Lin L, Cong Z, Cao J, Ke K, Peng Q, Gao J, Yang H, Liu G, Chen X (2014) Multifunctional Fe3O4@polydopamine coreshell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8:3876–3883

    Article  Google Scholar 

  44. Kang HS, Yang SR, Kim J, Han S, Chang I (2001) Effects of grafted alkyl groups on aggregation behavior of amphiphilic poly(aspartic acid). Langmuir 17:7501–7506

    Article  Google Scholar 

  45. Huang S, Yang L, Liu M, Phua SL, Yee WA, Liu W, Zhou R, Lu X (2013) Complexes of polydopamine-modified clay and ferric ions as the framework for pollutant-absorbing supramolecular hydrogels. Langmuir 29:1238–1244

    Article  Google Scholar 

  46. Hou S, Ma PX (2015) Stimuli-responsive supramolecular hydrogels with high extensibility and fast self-healing via precoordinated mussel-inspired chemistry. Chem Mater 27:7627–7635

    Article  Google Scholar 

  47. Choi YC, Choi JS, Junga YJ, Cho YW (2014) Human gelatin tissue-adhesive hydrogels prepared by enzyme-mediated biosynthesis of DOPA and Fe3+ ion crosslinking. J Mater Chem B 2:201–209

    Article  Google Scholar 

  48. Guo Z, Ni K, Wei D, Ren Y (2015) Fe3+-induced oxidation and coordination crosslinking in catechol-chitosan hydrogels under acidic pH conditions. RSC Adv 5:37377–37384

    Article  Google Scholar 

Download references

Funding

This study was funded by NSFC (51203079), the Natural Science Foundation of Tianjin (14JCYBJC18100), and PCSIRT (IRT1257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolin Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Lu, C., Li, B. et al. Dopamine-modified poly(amino acid): an efficient near-infrared photothermal therapeutic agent for cancer therapy. J Mater Sci 52, 955–967 (2017). https://doi.org/10.1007/s10853-016-0391-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0391-9

Keywords

Navigation