Skip to main content
Log in

Magnetization, phonon, and X-ray edge absorption in barium-doped BiFeO3 ceramics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnetization hysteresis loops, dc and ac magnetic susceptibilities, and Raman vibrations have been characterized in (Bi1−x Ba x )FeO3−δ ceramics for x = 0.0, 0.05, 0.10, and 0.15 as functions of temperature. Ferromagnetic hysteresis loops were observed in Ba-doped compounds with increasing magnetization as Ba substitution increases. High-resolution synchrotron Fe K- and L 2,3-edge X-ray absorptions reveal an Fe3+ valence and a modification of the Fe–O–Fe bond structure by the A-site Ba substitution. The oxygen K-edge X-ray absorption suggests that the hybridization of the O 2p and Fe 3d orbitals was reduced by the Ba2+ substitution. Field-cooled and zero-field-cooled magnetic susceptibilities reveal a spin-glass behavior, which was enhanced with increasing Ba substitution. Raman vibrations of the Bi- and Fe-sensitive E(2) and A 1(1) modes reveal frequency softening and step-like anomalies in full-width-at-half-maximum in the vicinity of ~150–250 K, which were attributed to spin–phonon interaction while magnetic ordering transitions take place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Sando D, Agbelele A, Rahmedov D et al (2013) Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater 12:641–646

    Article  Google Scholar 

  2. Kumar A, Scott JF, Katiyar RS (2011) Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature. Appl Phys Lett 99:062504

    Article  Google Scholar 

  3. Bhide VG, Multani MS (1965) Mössbauer effect in ferroelectric-antiferromagnetic BiFeO3. Solid State Commun 3:271–274

    Article  Google Scholar 

  4. Ravindran P, Vidya R, Kjekshus A et al (2006) Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys Rev B 74:224412

    Article  Google Scholar 

  5. Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C 15:4835–4846

    Article  Google Scholar 

  6. Sosnowska IM (2009) Neutron scattering studies of BiFeO3 multiferroics: a review for microscopists. J Microsc 236:109–114

    Article  Google Scholar 

  7. Przeniosło R, Palewicz A, Regulski M et al (2006) Does the modulated magnetic structure of BiFeO3 change at low temperatures? J Phys 18:2069–2075

    Google Scholar 

  8. Arnold DC (2015) Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review. IEEE Trans Ultrason, Ferroelect, Freq Control 62:62–82

    Article  Google Scholar 

  9. Chang LY, Tu CS, Chen PY et al (2016) Raman vibrations and photovoltaic conversion in rare earth doped (Bi0.93R0.07)FeO3 (R = Dy, Gd, Eu, Sm) ceramics. Ceram Int 42:834–842

    Article  Google Scholar 

  10. Tu CS, Chen CS, Chen PY et al (2016) Raman vibrations, domain structures and photovoltaic effects in A-site La-modified BiFeO3 multiferroic ceramics. J Am Ceram Soc 99:674–681

    Article  Google Scholar 

  11. Tu CS, Chen CS, Chen PY et al (2016) Enhanced photovoltaic effects in A-site samarium doped BiFeO3 ceramics: the roles of domain structure and electronic state. J Eur Ceram Soc 36:1149–1157

    Article  Google Scholar 

  12. Gautam A, Rangra VS (2010) Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite. Cryst Res Technol 45:953–956

    Article  Google Scholar 

  13. Khomchenko VA, Kiselev DA, Vieira JM et al (2008) M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J Appl Phys 103:024105

    Article  Google Scholar 

  14. Wang DH, Goh WC, Ming M et al (2006) Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in multiferroic BiFeO3 at room temperature. Appl Phys Lett 88:212907

    Article  Google Scholar 

  15. Li P, Lin YH, Nan CW (2011) Effect of nonmagnetic alkaline-earth dopants on magnetic properties of BiFeO3 thin films. J Appl Phys 110:033922

    Article  Google Scholar 

  16. Das R, Mandal K (2012) Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J Magn Magn Mater 324:1913–1918

    Article  Google Scholar 

  17. Chang HW, Shen CY, Yuan FT et al (2015) Multiferroic properties of (Bi, Ca)FeO3 films on glass substrates. Appl Surf Sci 355:121–126

    Article  Google Scholar 

  18. Tu CS, Xu ZR, Schmidt VH et al (2015) A-site strontium doping effects on structure, magnetic, and photovoltaic properties of (Bi1−x Sr x )FeO3 multiferroic ceramics. Ceram Int 41:8417–8424

    Article  Google Scholar 

  19. Chang HW, Yuan FT, Tu KT et al (2015) Effect of Ba substitution on the multiferroic properties of BiFeO3 films on glass substrates. J Appl Phys 117:17C734

    Article  Google Scholar 

  20. Hung CM, Tu CS, Xu ZR et al (2014) Effect of diamagnetic barium substitution on magnetic and photovoltaic properties in multiferroic BiFeO3. J Appl Phys 115:17D901

    Article  Google Scholar 

  21. Xu ZR, Tu CS, Hung CM et al (2014) Magnetic and photovoltaic properties of calcium-doped BiFeO3 ceramic. IEEE Trans Magn 50:2500304

    Google Scholar 

  22. Rangi M, Agarwal A, Sanghi S et al (2014) Crystal structure and magnetic properties of Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba) multiferroics using neutron diffraction and Mossbauer spectroscopy. AIP Adv 4:087121

    Article  Google Scholar 

  23. Khomchenko VA, Kopcewicz M, Lopes AML et al (2008) Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1-xAxFeO3 (A = Ca, Sr, Pb, Ba) multiferroics. J Phys D Appl Phys 41:102003

    Article  Google Scholar 

  24. Das R, Sharma S, Mandal K (2016) Aliovalent Ba2+ doping: a way to reduce oxygen vacancy in multiferroic BiFeO3. J Magn Magn Mater 401:129–137

    Article  Google Scholar 

  25. Makhdoom AR, Akhtar MJ, Rafiq MA et al (2012) Investigation of transport behavior in Ba doped BiFeO3. Ceram Int 38:3829–3834

    Article  Google Scholar 

  26. Singh MK, Prellier W, Singh MP et al (2008) Spin-glass transition in single-crystal BiFeO3. Phys Rev B 77:144403

    Article  Google Scholar 

  27. Gaikwad VM, Acharya SA (2014) Investigation on magnetic behaviour of BiFeO3: SPIN glass view point. Adv Mat Lett 5:157–160

    Article  Google Scholar 

  28. Singh MK, Katiyar RS, Prellier W et al (2009) The Almeida-Thouless line in BiFeO3: is bismuth ferrite a mean field spin glass? J Phys 21:042202

    Google Scholar 

  29. Singh MK, Prellier W, Jang HM et al (2009) Anomalous magnetic ordering induced spin phonon coupling in BiFeO3 thin films. Solid State Commun 149:1971–1973

    Article  Google Scholar 

  30. Joyy PA, Kumarz PSA, Date SK (1998) The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J Phys 10:11049–11054

    Google Scholar 

  31. Koshizuka N, Ushioda S (1980) Inelastic-light-scattering study of magnon softening in ErFeO3. Phys Rev B 22:5394–5399

    Article  Google Scholar 

  32. Venugopalan S, Dutta M, Ramdas AK et al (1983) Raman scattering study of magnons at the spin-reorientation transitions of TbFeO3 and TmFeO3. Phys Rev B 27:3115–3118

    Article  Google Scholar 

  33. Litvinchuk AP, Iliev MN, Popov VN et al (2004) Raman and infrared-active phonons in hexagonal HoMnO3 single crystals: magnetic ordering effects. J Phys 16:809–819

    Google Scholar 

  34. Sharma PA, Ahn JS, Hur N et al (2004) Thermal conductivity of geometrically frustrated, ferroelectric YMnO3: extraordinary spin-phonon interactions. Phys Rev Lett 93:177202

    Article  Google Scholar 

  35. Yamaguchi T (1974) Theory of spin reorientation in rare-earth orthochromites and orthoferrites. J Phys Chem Solids 35:479–500

    Article  Google Scholar 

  36. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  37. Fukumura H, Matsui S, Harima H et al (2007) Observation of phonons in multiferroic BiFeO3 single crystals by Raman scattering. J Phys 19:365224

    Google Scholar 

  38. Singh MK, Katiyar RS, Scott JF (2008) New magnetic phase transitions in BiFeO3. J Phys 20:252203

    Google Scholar 

  39. Palai R, Schmid H, Scott JF et al (2010) Raman spectroscopy of single-domain multiferroic BiFeO3. Phys Rev B 81:064110

    Article  Google Scholar 

  40. Beekman C, Reijnders AA, Oh YS et al (2012) Raman study of the phonon symmetries in BiFeO3 single crystals. Phys Rev B 86:020403

    Article  Google Scholar 

  41. Kothari D, Reddy VR, Sathe VG et al (2008) Raman scattering study of polycrystalline magnetoelectric BiFeO3. J Magn Magn Mater 320:548–552

    Article  Google Scholar 

  42. Rout D, Moon KS, Kang SJL (2009) Temperature-dependent Raman scattering studies of polycrystalline BiFeO3 bulk ceramics. J Raman Spectrosc 40:618–626

    Article  Google Scholar 

  43. Kumar A, Scott JF, Katiyar RS (2012) Magnon Raman spectroscopy and in-plane dielectric response in BiFeO3: relation to the Polomska transition. Phys Rev B 85:224410

    Article  Google Scholar 

  44. Iliev MN, Abrashev MV, Mazumdar D et al (2010) Polarized Raman spectroscopy of nearly tetragonal BiFeO3 thin films. Phys Rev B 82:014107

    Article  Google Scholar 

  45. Khabiri G, Anokhin AS, Razumnaya AG et al (2014) Phonon and magnon excitations in Raman spectra of an epitaxial bismuth ferrite film. Phys Solid State 56:2507–2513

    Article  Google Scholar 

  46. Palai R, Scott JF, Katiyar RS (2010) Phonon spectroscopy near phase transition temperatures in multiferroic BiFeO3 epitaxial thin films. Phys Rev B 81:024115

    Article  Google Scholar 

  47. Cazayous M, Gallais Y, Sacuto A et al (2008) Possible observation of cycloidal electromagnons in BiFeO3. Phys Rev Lett 101:037601

    Article  Google Scholar 

  48. Herrero-Albillos J, Catalan G, Rodriguez-Velamazan JA et al (2010) Neutron diffraction study of the BiFeO3 spin cycloid at low temperature. J Phys 22:26001

    Google Scholar 

  49. Ramazanoglu M, Ratcliff W, Choi YJ et al (2011) Temperature-dependent properties of the magnetic order in single-crystal BiFeO3. Phys Rev B 83:174434

    Article  Google Scholar 

  50. Jeong J, Le MD, Bourges P et al (2014) Temperature-dependent interplay of Dzyaloshinskii-Moriya interaction and single-ion anisotropy in multiferroic BiFeO3. Phys Rev Lett 113:107202

    Article  Google Scholar 

  51. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer, New York, pp 77–112

    Google Scholar 

  52. Lahmar A, Zhao K, Habouti S et al (2011) Off-stoichiometry effects on BiFeO3 thin films. Solid State Ionics 202:1–5

    Article  Google Scholar 

  53. Karimi S, Reaney IM, Han Y et al (2009) Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 44:5102–5112. doi:10.1007/s10853-009-3545-1

    Article  Google Scholar 

  54. Lufaso MW, Vanderach TA, Pazos M et al (2006) Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5. J Solid State Chem 179:3900–3910

    Article  Google Scholar 

  55. Grunes LA (1983) Study of the K edges of 3d transition metals in pure and oxide form by X-ray-absorption spectroscopy. Phys Rev B 27:2111–2131

    Article  Google Scholar 

  56. Anderson PW (1950) Antiferromagnetism theory of superexchange interaction. Phys Rev 79:350–356

    Article  Google Scholar 

  57. Ota N (2014) Super-exchange ferromagnetic order analysis of FeO-modified graphene-snano-ribbon. J Magn Soc Jpn 38:107–110

    Article  Google Scholar 

  58. Goodenough JB (1963) Magnetism and the chemical bond. Wiley, New York, pp 174–178

    Google Scholar 

  59. Bi L, Taussig AR, Kim HS et al (2008) Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: an experimental and first-principles study. Phys Rev B 78:104106

    Article  Google Scholar 

  60. Higuchi T, Sakamoto W, Itoh N et al (2008) Valence state of Mn-doped BiFeO3-BaTiO3 ceramics probed by soft X-ray absorption spectroscopy. Appl Phys Exp 1:011502

    Article  Google Scholar 

  61. Ikeno H, Tanaka I, Miyamae T et al (2004) First principles calculation of Fe L 2,3-edge X-ray absorption near edge structures of iron oxides. Mater Trans 45:1414–1418

    Article  Google Scholar 

  62. Miedema PS, Groot FMF (2013) The iron L edges: Fe 2p X-ray absorption and electron energy loss spectroscopy. J Electron Spectrosc Relat Phenom 187:32–48

    Article  Google Scholar 

  63. Crocombette JP, Pollak M, Joliet F et al (1995) X-ray-absorption spectroscopy at the Fe L 2,3 threshold in iron oxides. Phys Rev B 52:3143–3150

    Article  Google Scholar 

  64. de Groot FMF, Gnom M, Fuggle JC (1989) Oxygen 1 s x-ray-absorption edges of transition-metal oxides. Phys Rev B 40:5715–5723

    Article  Google Scholar 

  65. Wu ZY, Gota S, Jollet F et al (1997) Characterization of iron oxides by x-ray absorption at the oxygen K edge using a full multiple-scattering approach. Phys Rev B 55:2570–2577

    Article  Google Scholar 

  66. Ma Y, Johnson PD, Wassdahl N et al (1993) Electronic structures of α-Fe2O3 and Fe3O4 from O K-edge absorption and emission spectroscopy. Phys Rev B 48:2109–2111

    Article  Google Scholar 

  67. Ballhausen CJ (1962) Introduction to ligand-field theory. McGraw-Hill, New York

    Google Scholar 

  68. Douma DH, Ciprian R, Lamperti A et al (2014) Experimental versus ab initio x-ray absorption of iron-doped zirconia: trends in O K-edge spectra as a function of iron doping. Phys Rev B 90:205201

    Article  Google Scholar 

  69. Paudel TR, Jaswal SS, Tsymbal EY (2012) Intrinsic defects in multiferroic BiFeO3 and their effect on magnetism. Phys Rev B 85:104409

    Article  Google Scholar 

  70. Park TJ, Papaefthymiou GC, Viescas AJ et al (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7:766–772

    Article  Google Scholar 

  71. Spaldin NA (2011) Magnetic Materials, 2nd edn. Cambridge, New York

    Google Scholar 

  72. Sankar CR, Joy PA (2005) Magnetic properties of the self-doped lanthanum manganites La1−x MnO3. Phys Rev B 72:024405

    Article  Google Scholar 

  73. Martínez B, Obradors X, Balcells L et al (1998) Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys Rev Lett 80:181–184

    Article  Google Scholar 

  74. Hermet P, Gofinet M, Kreisel J et al (2007) Raman and infrared spectra of multiferroic bismuth ferrite from first principles. Phys Rev B 75:220102

    Article  Google Scholar 

  75. Hlinka J, Pokorny J, Karimi S et al (2011) Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering. Phys Rev B 83:020101

    Article  Google Scholar 

  76. Bielecki J, Svedlindh P, Tibebu DT et al (2012) Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy. Phys Rev B 86:184422

    Article  Google Scholar 

  77. Delaire O, Stone MB, Ma J et al (2012) Anharmonic phonons and magnons in BiFeO3. Phys Rev B 85:064405

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Ministry of Science and Technology of Taiwan (MOST) under Project Nos. 104-2221-E-030-014 and 104-2221-E-146-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Shun Tu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ting, Y., Tu, CS., Chen, PY. et al. Magnetization, phonon, and X-ray edge absorption in barium-doped BiFeO3 ceramics. J Mater Sci 52, 581–594 (2017). https://doi.org/10.1007/s10853-016-0355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0355-0

Keywords

Navigation