Skip to main content
Log in

A novel route for synthesis of α-Fe2O3–CeO2 nanocomposites for ethanol conversion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a series of α-Fe2O3–CeO2 nanocomposites containing 5, 15, 30, and 50 % Fe as well as the pure oxides, α-Fe2O3 and CeO2, were synthesized by a novel route of auto-combustion method at temperatures lower than those reported previously. The as-synthesized catalysts were characterized by several techniques such as XRD, XRF, N2 physisorption, DSC/TGA, NH3-TPD, TEM, and EDX. The catalytic activity of the synthesized nanocomposites was examined under ethanol conversion. The results revealed that the solid-solution formation was established for all the Fe-substituted CeO2 samples while maintaining the fluorite structure of ceria. Only a hardly noticeable segregation of α-Fe2O3 was appreciated for the catalyst samples with higher iron content (30 and 50 wt% Fe). The results confirmed that the adopted auto-combustion method allowed a good control of the chemical composition of the prepared composites with the proper structural and textural characteristics. The 30 % Fe–Ce sample was the most active and selective catalyst toward ethylene production compared with the other samples under study, owing to the pronounced Brönsted acid sites. The overall data collected through this work revealed that the synthesized nanocomposites are promising candidates for the production of ethylene from ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Mogensen M, Sammes NM, Tompsett GA (2000) Physical chemical and electrochemical properties of pure and doped ceria. Solid State Ion 129:63

    Article  Google Scholar 

  2. Yashima M, Sasaki S, Yamaguchi Y, Kakihana M, Yoshimura M, Mori T (1998) Internal distortion in ZrO2–CeO2 solid solutions: neutron and high-resolution synchrotron x-ray diffraction study. Appl Phys Lett 72:182

    Article  Google Scholar 

  3. Nikolaou K (1999) Emissions reduction of high and low polluting new technology vehicles equipped with a CeO2 catalytic system. Sci Total Environ 235:71

    Article  Google Scholar 

  4. Ozawa M (1998) Role of cerium-zirconium mixed oxides as catalysts for car pollution: a short review. J Alloys Compd 275–277:886

    Article  Google Scholar 

  5. Feng X, Sayle DC, Wang ZL, Paras MS, Santora B, Sutorik AC, Sayle TXT, Yang Y, Ding Y, Wang XD, Her YS (2006) Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 312:1504

    Article  Google Scholar 

  6. Imanaka N, Masui T, Hirai H, Adachi G (2003) Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials. Chem Mater 15:2289

    Article  Google Scholar 

  7. Kakuta N, Morishima N, Kotobuki M, Iwase T, Mizushima T, Sato Y, Matsuura S (1997) Oxygen storage capacity (OSC) of aged Pt/CeO2/Al2O3 catalysts: roles of Pt and CeO2 supported on Al2O3. Appl Surf Sci 121–122:408

    Article  Google Scholar 

  8. Lira-Cantu M, Krebs FC (2006) Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2–TiO2): performance improvement during long-time irradiation. Sol Energy Mater Sol Cells 90:2076

    Article  Google Scholar 

  9. Zhou J, Mullins DR (2006) Adsorption and reaction of formaldehyde on thin-film cerium oxide. Surf Sci 600:1540

    Article  Google Scholar 

  10. Tsunekawa S, Ishikawa K, Li Z-Q, Kawazoe Y, Kasuya A (2000) Origin of anomalous lattice expansion in oxide nanoparticles. Phys Rev Lett 85:3440

    Article  Google Scholar 

  11. Wang ZW, Saxena SK, Pischedda V, Liermann HP, Zha CS (2001) In situ x-ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2. Phys Rev B 6401(1):2102

    Google Scholar 

  12. Tsunekawa S, Fukuda T, Kasuya A (2000) Blue shift in ultraviolet absorption spectra of monodisperse CeO2-x nanoparticles. J Appl Phys 87:1318

    Article  Google Scholar 

  13. Chen H, Chang H (2005) Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram Int 31:795

    Article  Google Scholar 

  14. Qi RJ, Zhu YJ, Huang YH (2005) Sonochemical synthesis of single-crystalline CeOHCO3 rods and their thermal conversion to CeO2 rods. Nanotechnology 16:2502

    Article  Google Scholar 

  15. Shuk P, Greenblatt M (1999) Hydrothermal synthesis and properties of mixed conductors based on Ce1-x Pr x O2 solid solutions. Solid State Ion 116:217

    Article  Google Scholar 

  16. Bumajdad A, Zaki MI, Eastoe J, Pasupulety L (2004) Microemulsion-based synthesis of CeO2 powders with high surface area and high-temperature stabilities. Langmuir 20:11223

    Article  Google Scholar 

  17. Tsuzuki T, Robinson JS, McCormick PGJ (2002) UV-shielding ceramic nanoparticles synthesised by mechanochemcial processing. J Aust Ceram Soc 38:15

    Google Scholar 

  18. Wang Y, Mori T, Li J, Ikegami T (2002) Low-temperature synthesis of praseodymium-doped ceria nanopowders. J Am Ceram Soc 85:3105

    Article  Google Scholar 

  19. Navarrete EL, Caballero A, Elipe ARG, Ocana M (2002) Low-temperature preparation and structural characterization of Pr-doped ceria solid solutions. J Mater Res 17:797

    Article  Google Scholar 

  20. Hartridge A, Bhattacharya AK (2002) Preparation and analysis of zirconia doped ceria nanocrystal dispersions. J Phys Chem Solids 63:441

    Article  Google Scholar 

  21. Hirano M, Fukuda Y, Iwata H, Hotta Y, Inagaki M (2000) Preparation and spherical agglomeration of crystalline cerium (IV) oxide nanoparticles by thermal hydrolysis. J Am Ceram Soc 83:1287

    Article  Google Scholar 

  22. Gao Y, Bao Y, Beerman M, Yasuhara A, Shindo D, Krishman MK (2004) Superstructures of self-assembled cobalt nanocrystals. Appl Phys Lett 84:3361

    Article  Google Scholar 

  23. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995

    Article  Google Scholar 

  24. Jing Z, Wang Y, Wu S (2006) Preparation and gas sensing properties of pure and doped γ-Fe2O3 by an anhydrous solvent method. Sens Actuator B 113(1):177

    Article  Google Scholar 

  25. Bora DK, Deb P (2009) Fatty acid binding domain mediated conjugation of ultrafine magnetic nanoparticles with albumin protein. Nanoscale Res Lett 4:138

    Article  Google Scholar 

  26. Liu Q, Cui Z, Ma Z, Bian S, Song W, Wan L (2007) Morphology control of Fe2O3 nanocrystals and their application in catalysis. Nanotechnology 18:385605

    Article  Google Scholar 

  27. Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125

    Article  Google Scholar 

  28. Jovalekic C, Zdujic M, Radakovic A, Mitric M (1995) Mechanochemical synthesis of NiFe2O4 ferrite. Mater Lett 24:365

    Article  Google Scholar 

  29. Lee S, Jeong J, Shin S, Kim J, Kim J (2004) Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J Magn Magn Mater 282:147

    Article  Google Scholar 

  30. Sahooa SK, Mohapatraa M, Pandeyb B, Vermab HC, Dasa RP, Ananda S (2009) Preparation and characterization of γ-Fe2O3-CeO2 composite. Mater Charact 6:425

    Article  Google Scholar 

  31. Zaki T (2005) Catalytic dehydration of ethanol using transition metal oxide catalysts. J Colloid Interface Sci 284:606

    Article  Google Scholar 

  32. Wu L-P, Li X-J, Yuan Z-H, Chen Y (2009) The fabrication of TiO2-supported zeolite with core/shell heterostructure for ethanol dehydration to ethylene. Catal Commun 11:67

    Article  Google Scholar 

  33. Xiao Y, Li X, Yuan Z, Li J, Chen Y (2009) Catalytic dehydration of ethanol to ethylene on TiO2/4A zeolite composite catalysts. Catal Lett 130:308

    Article  Google Scholar 

  34. Zhang X, Wang R, Yang X, Zhang F (2008) Comparison of four catalysts in the catalytic dehydration of ethanol to ethylene. Microporous Mesoporous Mater 116:210

    Article  Google Scholar 

  35. Zhang D, Wang R, Yang X (2008) Effect of P content on the catalytic performance of P-modified HZSM-5 catalysts in dehydration of ethanol to ethylene. Catal Lett 124:384

    Article  Google Scholar 

  36. Takahara I, Saito M, Inaba M, Murata K (2005) Dehydration of ethanol into ethylene over solid acid catalysts. Catal Lett 105:249

    Article  Google Scholar 

  37. Varisli D, Dogu T, Dogu G (2007) Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts. Chem Eng Sci 62:5349

    Article  Google Scholar 

  38. Varisli D, Dogu T, Dogu G (2008) Silicotungstic acid impregnated MCM-41-like mesoporous solid acid catalysts for dehydration of ethanol. Ind Eng Chem Res 47:4071

    Article  Google Scholar 

  39. Haber J, Pamin K, Matachowski L, Napruszewska B, Połtowicz J (2002) Potassium and silver salts of tungstophosphoric acid as catalysts in dehydration of ethanol and hydration of ethylene. J Catal 207:296

    Article  Google Scholar 

  40. Gayubo AG, Alonso A, Valle B, Aguayo AT, Bilbao J (2010) Selective production of olefins from bioethanol on HZSM-5 zeolite catalysts treated with NaOH. Appl Catal B 97:299

    Article  Google Scholar 

  41. Aguayo AT, Gayubo AG, Atutxa A, Olazar M, Bilbao J (2002) Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst. Ind Eng Chem Res 41:4216

    Article  Google Scholar 

  42. Aguayo AT, Gayubo AG, Atutxa A, Valle B, Bilbao J (2005) Regeneration of a HZSM-5 zeolite catalyst deactivated in the transformation of aqueous ethanol into hydrocarbons. Catal Today 107–108:410

    Article  Google Scholar 

  43. Gayubo AG, Aguayo AT, Tarrío AM, Olazar M, Bilbao J (2001) Kinetic modelling for deactivation by coke deposition of a HZSM-5 zeolite catalyst in the transformation of aqueous ethanol into hydrocarbons. Stud Surf Sci 139:455

    Google Scholar 

  44. Bedia J, Barrionuevo R, Rodríguez-Mirasol J, Cordero T (2011) Ethanol dehydration to ethylene on acid carbon catalysts. Appl Catal B 103:302

    Article  Google Scholar 

  45. Nakanishi M, Bolm C (2007) Iron-catalyzed benzylic oxidation with aqueous tert-butyl hydroperoxide. Adv Synth Catal 349(6):861

    Article  Google Scholar 

  46. Martin SE, Garrone A (2003) Efficient solvent-free iron (III) catalyzed oxidation of alcohols by hydrogen peroxide. Tetrahedron Lett 44(3):549

    Article  Google Scholar 

  47. Shi F, Kin Tse M, Pohl M, Radnik J, Brückner A, Zhang S, Beller M (2008) Nano-iron oxide-catalyzed selective oxidations of alcohols and olefins with hydrogen peroxide. J Mol Catal A 292:28

    Article  Google Scholar 

  48. Wang S, Lu GQ (1998) Role of CeO2 in Ni/CeO2–Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal B 19:267

    Article  Google Scholar 

  49. Piras A, Trovarelli A, Dolcetti G (2000) Remarkable stabilization of transition alumina operated by ceria under reducing and redox conditions. Appl Catal B 28:77

    Article  Google Scholar 

  50. Cai W, Wang F, Zhan E, VanVeen AC, Mirodatos C, Shen W (2008) Hydrogen production from ethanol over Ir/CeO2 catalysts: a comparative study of steam reforming, partial oxidation and oxidative steam reforming. J Catal 257:96

    Article  Google Scholar 

  51. Purohit RD, Saha S, Tyagi AK (2006) Powder characteristics and sinterability of ceria powders prepared through different routes. Ceram Int 32:143

    Article  Google Scholar 

  52. Shinohara Y, Nakajima T, Suzuki S (1999) A theoretical study of the dehydration and the dehydrogenation processes of alcohols on metal oxides using MOPAC. J Mol Struct (Theochem) 460:231

    Article  Google Scholar 

  53. Hassan SA, Gobara HM, Gomaa MM, Mohamed RS, Khalil FH (2015) Can microwave assisted in situ reduction of supported Pt nanoparticles challenge the chemical method in controlling the dispersion profile catalytic performance relationship? RSC Adv 5:54460

    Article  Google Scholar 

  54. Chen P-L, Chen I-W (1993) Reactive cerium (IV) oxide powders by the homogeneous precipitation method. J Am Ceram Soc 76:1577

    Article  Google Scholar 

  55. Purohit RD, Saha S, Tyagi AK (2000) Combustion synthesis and bulk thermal expansion studies of Ba and Sr thorates. J Nucl Mater 280:51

    Article  Google Scholar 

  56. Purohit RD, Saha S, Tyagi AK (2006) Structure-activity relation of Fe2O3–CeO2 composite catalysts in CO oxidation. Ceram Int 32:143

    Article  Google Scholar 

  57. Laguna OH, Centeno MA, Boutonnet M, Odriozola JA (2011) Fe-doped ceria solids synthesized by the microemulsion method for CO oxidation reactions. Appl Catal B 3–4(11):621

    Article  Google Scholar 

  58. Neri G, Bonavita A, Rizzo G, Galvagno S, Capone S, Siciliano P (2006) Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens Actuators B 114:687–695

    Article  Google Scholar 

  59. Laguna OH, Centeno MA, Arzamendi G, Gandía LM, Romero-Sarria F, Odriozola JA (2010) ron-modified ceria and Au/ceria catalysts for total and preferential oxidation of CO (TOX and PROX). Catal Today 157:155

    Article  Google Scholar 

  60. Laguna OH, Romero Sarria F, Centeno MA, Odriozola JA (2010) Gold supported on metal-doped ceria catalysts (M=Zr, Zn and Fe) for the preferential oxidation of CO (PROX). J Catal 276:360

    Article  Google Scholar 

  61. Bao H, Chen X, Fang J, Jiang Z, Huang W (2008) Structure-activity relation of Fe2O3–CeO2 composite catalysts in CO oxidation. Catal Lett 125:160

    Article  Google Scholar 

  62. Hernández WY, Romero-Sarria F, Centeno MA, Odriozola JA (2010) In situ characterization of the dynamic gold-support interaction over ceria modified Eu3+. Influence of the oxygen vacancies on the CO oxidation reaction. J Phys Chem C 114:10857

    Article  Google Scholar 

  63. Romero-Sarria F, Vargas JC, Roger A-C, Kiennemann A (2008) Hydrogen production by steam reforming of ethanol: study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: comparison of Ni/Co and effect of Rh. Catal Today 133–135:149

    Article  Google Scholar 

  64. Rossignol S, Micheaud-Especel C, Duprez D, Avelino Corma FVMSM, José Luis GF (2000) Structural and catalytic properties of Zr–Ce–O mixed oxides. Role of the anionic vacancies. Stud Surf Sci Catal 130:3327

  65. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations). Pure Appl Chem 57:603

    Article  Google Scholar 

  66. Leofanti G, Padovan M, Tozzola G, Venturelli B (1998) Surface area and pore texture of catalysts. Catal Today 41:207

    Article  Google Scholar 

  67. Yu X, Li F, Ye X, Xin X, Xue Z (2000) Synthesis of cerium (IV) oxide ultrafine particles by solid-state reactions. J Am Ceram Soc 83:964

    Article  Google Scholar 

  68. Xie G, Liu Z, Zhu Z, Liu Q, Ge J, Huang Z (2004) Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent: II. Promotion of SCR activity by SO2 at high temperatures. J Catal 224:42

    Article  Google Scholar 

  69. Long RQ, Yang RT (2000) Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J Catal 194:80

    Article  Google Scholar 

  70. Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey RJ (1995) Adsorption, activation, and oxidation of ammonia over SCR catalysts. J Catal 157:523

    Article  Google Scholar 

  71. Si Z, Weng D, Wu X, Yang J, Wang B (2010) Modifications of CeO2-ZrO2 solid solutions by nickel and sulfate as catalysts for NO reduction with ammonia in excess O2. Catal Commun 11:1045

    Article  Google Scholar 

  72. Ilieva L, Pantaleo G, Ivanov I, Zanella R, Venezia AM, Andreeva D (2009) A comparative study of differently prepared rare earths-modified ceria-supported gold catalysts for preferential oxidation of CO. Int J Hydrog Energy 34:6505

    Article  Google Scholar 

  73. Damyanova S, Pawelec B, Arishtirova K, Huerta MVM, Fierro JLG (2008) The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Appl Catal A 337:86

    Article  Google Scholar 

  74. Brown R, Cooper ME, Whan DA (1982) Temperature programmed reduction of alumina-supported iron, cobalt and nickel bimetallic catalysts. Appl Catal 3:177

    Article  Google Scholar 

  75. Li S, Krishnamoorthy S, Li A, Meitzner GD, Iglesia E (2002) Promoted iron-based catalysts for the Fischer–Tropsch Synthesis: design, synthesis, site densities, and catalytic properties. J Catal 206:202

    Article  Google Scholar 

  76. Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer–Tropsch synthesis catalysts. Catal Lett 77:197

    Article  Google Scholar 

  77. Zhong Z, Highfield J, Lin M, Teo J, Han Y-F (2008) Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR. Langmuir 24:8576

    Article  Google Scholar 

  78. Grunewald GC, Drago RS (1991) Carbon. Molecular sieves as catalysts and catalyst supports. J Am Chem Soc 113(5):1636

    Article  Google Scholar 

  79. Riad M, Sobhi Z, Mikhail S (2002) Catalytic dehydration reaction of ethanol over transition metal catalysts. J Eng Appl Sci 49(1):195

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba M. Gobara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 53 kb)

Supplementary material 2 (JPG 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobara, H.M., Aboutaleb, W.A., Hashem, K.M. et al. A novel route for synthesis of α-Fe2O3–CeO2 nanocomposites for ethanol conversion. J Mater Sci 52, 550–568 (2017). https://doi.org/10.1007/s10853-016-0353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0353-2

Keywords

Navigation