Skip to main content

Advertisement

Log in

Aerogels based on carbon nanomaterials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanomaterial-based aerogels have attracted significant interests from both academia and industry due to their extremely low bulk density, tunable surface functionality, high specific surface area, dielectric strength and thermal and electrical properties, and diverse applications. There is currently a lack of understanding of how processing factors would determine the structure–property relationships important to the wide applications of these aerogels. The present work thoroughly examines the preparation, structure, properties and applications of three types of aerogels. Firstly, we briefly review carbon aerogels prepared from the sol–gel of certain organic monomers, where the synthesis and processing conditions determine the structural features, such as pore volume and pore size distribution. Secondly, carbon nanotube (CNT) aerogels made by three methods are discussed to identify their relative advantageous over carbon aerogels in terms of electrical conductivity and mechanical robustness. Finally, graphene aerogels are reviewed, which can be prepared by four routes—template-directed CVD, in situ reduction assembly, template-directing assembly and cross-linking. In comparison with CNT aerogels, graphene aerogels can be made at lower manufacturing costs to achieve appropriate properties meeting various needs. The major applications of these aerogels include flexible energy storage devices and environmental applications, both of which exploit the key characteristics of carbon aerogels such as low density and high porosity, deformability, mechanical robustness, electrical conductivity, adsorption and electro-sorption. Challenges, research opportunities and future applications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  Google Scholar 

  2. Nicolaon G, Teichner S (1968) On a new process of preparation of silica xerogels and aerogels and their textural properties. Bull Soc Chim Fr 5:1900–1906

    Google Scholar 

  3. Kanamori K (2011) Organic-inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol-gel process. J Ceram Soc Jpn 119:16–22

    Article  Google Scholar 

  4. Schmidt H, Scholze H (1986). In Fricke J (ed) Aerogels: proceedings of the first international symposium, Würzburg, Fed. Rep. of Germany September 23–25, 1985. Springer, Berlin

  5. Tewari PH, Hunt AJ, Lofftus KD (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3:363–367

    Article  Google Scholar 

  6. Leventis N, Sotiriou-Leventis C, Mulik S et al (2008) Polymer nanoencapsulated mesoporous vanadia with unusual ductility at cryogenic temperatures. J Mater Chem 18:2475–2482

    Article  Google Scholar 

  7. Leventis N, Mulik S, Wang X et al (2008) Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. J Non Cryst Solids 354:632–644

    Article  Google Scholar 

  8. Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Article  Google Scholar 

  9. He J, Li X, Su D, Ji H, Qiao Y (2015) High-strength mullite fibers reinforced ZrO2–SiO2 aerogels fabricated by rapid gel method. J Mater Sci 50:7488–7494. doi:10.1007/s10853-015-9308-2

    Article  Google Scholar 

  10. Popa M, Diamandescu L, Vasiliu F et al (2008) Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. J Mater Sci 44:358–364. doi:10.1007/s10853-008-3147-3

    Article  Google Scholar 

  11. Sung WJ, Hyun S-H, Kim D-H, Kim D-S, Ryu J (2009) Fabrication of mesoporous titania aerogel film via supercritical drying. J Mater Sci 44:3997–4002. doi:10.1007/s10853-009-3550-4

    Article  Google Scholar 

  12. Mizushima Y, Hori M (1995) Alumina–silica aerogel catalysts prepared by two supercritical drying methods for methane combustion. J Mater Sci 30:1551–1555. doi:10.1007/bf00375263

    Article  Google Scholar 

  13. Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968

    Article  Google Scholar 

  14. Davis M, Hung-Low F, Hikal WM, Hope-Weeks LJ (2013) Enhanced photocatalytic performance of Fe-doped SnO2 nanoarchitectures under UV irradiation: synthesis and activity. J Mater Sci 48:6404–6409. doi:10.1007/s10853-013-7440-4

    Article  Google Scholar 

  15. Pekala RW, Mayer ST, Kaschmitter JL, Kong FM (1994) In: Attia YA (ed) Sol-gel processing and applications. Springer, MA, US

    Google Scholar 

  16. Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191

    Article  Google Scholar 

  17. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661–664

    Article  Google Scholar 

  18. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428

    Article  Google Scholar 

  19. Hüsing N, Schubert U (1998) Aerogels—airy materials: chemistry, structure, and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  20. Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40:874–884

    Article  Google Scholar 

  21. Moreno-Castilla C, Maldonado-Hódar F (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43:455–465

    Article  Google Scholar 

  22. Biener J, Stadermann M, Suss M et al (2011) Advanced carbon aerogels for energy applications. Energy Environ Sci 4:656–667

    Article  Google Scholar 

  23. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:937–950

    Article  Google Scholar 

  24. Mehling T, Smirnova I, Guenther U, Neubert R (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479

    Article  Google Scholar 

  25. García-González C, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438

    Article  Google Scholar 

  26. Pekala R, Farmer J, Alviso C et al (1998) Carbon aerogels for electrochemical applications. J Non Cryst Solids 225:74–80

    Article  Google Scholar 

  27. You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6:15302–15308

    Article  Google Scholar 

  28. He S, Cheng X, Li Z, Shi X, Yang H, Zhang H (2015) Green and facile synthesis of sponge-reinforced silica aerogel and its pumping application for oil absorption. J Mater Sci 51:1292–1301. doi:10.1007/s10853-015-9427-9

    Article  Google Scholar 

  29. Ge B, Men X, Zhu X, Zhang Z (2015) A superhydrophobic monolithic material with tunable wettability for oil and water separation. J Mater Sci 50:2365–2369. doi:10.1007/s10853-014-8756-4

    Article  Google Scholar 

  30. Antonietti M, Fechler N, Fellinger T-P (2013) Carbon aerogels and monoliths: control of porosity and nanoarchitecture via sol–gel routes. Chem Mater 26:196–210

    Article  Google Scholar 

  31. Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972. doi:10.1126/science.255.5047.971

    Article  Google Scholar 

  32. Hebalkar N, Arabale G, Sainkar SR et al (2005) Study of correlation of structural and surface properties with electrochemical behaviour in carbon aerogels. J Mater Sci 40:3777–3782. doi:10.1007/s10853-005-3318-4

    Article  Google Scholar 

  33. Zhang M, Fang S, Zakhidov AA et al (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309:1215–1219

    Article  Google Scholar 

  34. Wang J, Ellsworth M (2009) Graphene aerogels. ECS Trans 19:241–247. doi:10.1149/1.3119548

    Article  Google Scholar 

  35. Pekala RW, Alviso CT (1990) A new synthetic route to organic aerogels. MRS Online Proceedings Library Archive 180:791. doi:10.1557/PROC-180-791

  36. Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125:67–75. doi:10.1016/0022-3093(90)90324-F

    Article  Google Scholar 

  37. Pekala RW, Schaefer DW (1993) Structure of organic aerogels. 1. Morphology and scaling. Macromolecules 26:5487–5493. doi:10.1021/ma00072a029

    Article  Google Scholar 

  38. Lee O-J, Lee K-H, Jin Yim T, Young Kim S, Yoo K-P (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non Cryst Solids 298:287–292. doi:10.1016/S0022-3093(01)01041-9

    Article  Google Scholar 

  39. Pekala RW, Alviso CT, Lu X, Gross J, Fricke J (1995) New organic aerogels based upon a phenolic-furfural reaction. J Non Cryst Solids 188:34–40. doi:10.1016/0022-3093(95)00027-5

    Article  Google Scholar 

  40. Ling L, Qing-Han M (2005) Electrochemical properties of mesoporous carbon aerogel electrodes for electric double layer capacitors. J Mater Sci 40:4105–4107. doi:10.1007/s10853-005-0644-5

    Article  Google Scholar 

  41. Lorjai P, Chaisuwan T, Wongkasemjit S (2009) Porous structure of polybenzoxazine-based organic aerogel prepared by sol–gel process and their carbon aerogels. J Sol Gel Sci Technol 52:56–64. doi:10.1007/s10971-009-1992-4

    Article  Google Scholar 

  42. Ruben GC, Pekala RW (1995) High-resolution transmission electron microscopy of the nanostructure of melamine–formaldehyde aerogels. J Non Cryst Solids 186:219–231. doi:10.1016/0022-3093(95)00082-8

    Article  Google Scholar 

  43. Nguyen MH, Dao LH (1998) Effects of processing variable on melamine–formaldehyde aerogel formation. J Non Cryst Solids 225:51–57. doi:10.1016/S0022-3093(98)00008-8

    Article  Google Scholar 

  44. Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) Polyurethane based organic aerogels and their transformation into carbon aerogels. J Non Cryst Solids 225:64–68. doi:10.1016/S0022-3093(98)00010-6

    Article  Google Scholar 

  45. Tao Y, Endo M, Kaneko K (2008) A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels. Recent Pat Chem Eng 1:192–200

    Article  Google Scholar 

  46. http://energy.gov/eere/office-energy-efficiency-renewable-energy (accessed on 26/1/2016)

  47. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15:101–114

    Article  Google Scholar 

  48. Li J, Wang X, Huang Q, Gamboa S, Sebastian P (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158:784–788

    Article  Google Scholar 

  49. Berthon S, Barbieri O, Ehrburger-Dolle F et al (2001) DLS and SAXS investigations of organic gels and aerogels. J Non Cryst Solids 285:154–161. doi:10.1016/S0022-3093(01)00447-1

    Article  Google Scholar 

  50. Fu R, Zheng B, Liu J et al (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13:558–562. doi:10.1002/adfm.200304289

    Article  Google Scholar 

  51. Wei Y-Z, Fang B, Iwasa S, Kumagai M (2005) A novel electrode material for electric double-layer capacitors. J Power Sources 141:386–391

    Article  Google Scholar 

  52. Cook R, Letts S, Overturf III G, Lambert S, Wilemski G, Schroen-Carey D (1997) Final report UCRL-LR-105821-97-1, Lawrence Livermore National Laboratory, Livermore, CA

  53. Ying T-Y, Yang K-L, Yiacoumi S, Tsouris C (2002) Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J Colloid Interface Sci 250:18–27

    Article  Google Scholar 

  54. Gurav JL, Jung I-K, Park H-H, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:23

    Article  Google Scholar 

  55. Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35:791–796. doi:10.1016/S0008-6223(97)00024-9

    Article  Google Scholar 

  56. Tamon H, Ishizaka H, Araki T, Okazaki M (1998) Control of mesoporous structure of organic and carbon aerogels. Carbon 36:1257–1262. doi:10.1016/S0008-6223(97)00202-9

    Article  Google Scholar 

  57. Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Control of mesoporosity of carbon gels prepared by sol–gel polycondensation and freeze drying. J Non Cryst Solids 288:46–55. doi:10.1016/S0022-3093(01)00619-6

    Article  Google Scholar 

  58. Fairén-Jiménez D, Carrasco-Marín F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44:2301–2307. doi:10.1016/j.carbon.2006.02.021

    Article  Google Scholar 

  59. Wu D, Fu R, Zhang S, Dresselhaus MS, Dresselhaus G (2004) Preparation of low-density carbon aerogels by ambient pressure drying. Carbon 42:2033–2039. doi:10.1016/j.carbon.2004.04.003

    Article  Google Scholar 

  60. Singh R, Khardekar R, Kohli D, Singh M, Srivastava H, Gupta P (2010) Synthesis of platinum nanoparticles on carbon aerogel by ambient pressure drying method. Mater Lett 64:843–845

    Article  Google Scholar 

  61. Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu H (2009) One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol–formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc 131:4576–4577

    Article  Google Scholar 

  62. Maldonado-Hódar F, Ferro-García M, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition-metal-containing organic aerogels and their carbonized derivatives. Carbon 37:1199–1205

    Article  Google Scholar 

  63. Bekyarova E, Kaneko K (1999) Microporous nature of Ce, Zr-doped carbon aerogels. Langmuir 15:7119–7121

    Article  Google Scholar 

  64. Maldonado-Hódar F, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16:4367–4373

    Article  Google Scholar 

  65. Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12:1625–1628

    Article  Google Scholar 

  66. Hwang S-W, Hyun S-H (2004) Capacitance control of carbon aerogel electrodes. J Non Cryst Solids 347:238–245

    Article  Google Scholar 

  67. Schwan M, Naikade M, Raabe D, Ratke L (2015) From hard to rubber-like: mechanical properties of resorcinol–formaldehyde aerogels. J Mater Sci 50:5482–5493. doi:10.1007/s10853-015-9094-x

    Article  Google Scholar 

  68. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Preparation of mesoporous carbon by freeze drying. Carbon 37:2049–2055. doi:10.1016/S0008-6223(99)00089-5

    Article  Google Scholar 

  69. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (2000) Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors. Carbon 38:1099–1105. doi:10.1016/S0008-6223(99)00235-3

    Article  Google Scholar 

  70. Czakkel O, Marthi K, Geissler E, László K (2005) Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels. Microporous Mesoporous Mater 86:124–133. doi:10.1016/j.micromeso.2005.07.021

    Article  Google Scholar 

  71. Bozbag SE, Sanli D, Erkey C (2011) Synthesis of nanostructured materials using supercritical CO2: part II. Chemical transformations. J Mater Sci 47:3469–3492. doi:10.1007/s10853-011-6064-9

    Article  Google Scholar 

  72. Fricke J, Tillotson T (1997) Aerogels: production, characterization, and applications. Thin Solid Films 297:212–223

    Article  Google Scholar 

  73. Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Effect of drying conditions on mesoporosity of carbon precursors prepared by sol–gel polycondensation and freeze drying. Carbon 39:2374–2376

    Article  Google Scholar 

  74. Pröbstle H, Schmitt C, Fricke J (2002) Button cell supercapacitors with monolithic carbon aerogels. J Power Sources 105:189–194

    Article  Google Scholar 

  75. Wiener M, Reichenauer G, Scherb T, Fricke J (2004) Accelerating the synthesis of carbon aerogel precursors. J Non Cryst Solids 350:126–130

    Article  Google Scholar 

  76. Kim S, Hwang S, Hyun S (2005) Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J Mater Sci 40:725–731

    Article  Google Scholar 

  77. Mirzaeian M, Hall PJ (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44:2705–2713. doi:10.1007/s10853-009-3355-5

    Article  Google Scholar 

  78. Qin G, Guo S (1999) Drying of RF gels with supercritical acetone. Carbon 37:1168–1169

    Google Scholar 

  79. Kuhn J, Brandt R, Mehling H, Petričević R, Fricke J (1998) In situ infrared observation of the pyrolysis process of carbon aerogels. J Non Cryst Solids 225:58–63

    Article  Google Scholar 

  80. Mayer ST, Kaschmitter JL, Pekala R (1997) Carbon aerogel electrodes for direct energy conversion. Renew Energy 12:119. doi:10.1016/S0960-1481(97)81452-8

    Google Scholar 

  81. Pekala R, Alviso C, Kong F, Hulsey S (1992) Aerogels derived from multifunctional organic monomers. J Non Cryst Solids 145:90–98

    Article  Google Scholar 

  82. Baumann TF, Fox GA, Satcher JH, Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and characterization of copper-doped carbon aerogels. Langmuir 18:7073–7076

    Article  Google Scholar 

  83. Miller JM, Dunn B (1999) Morphology and electrochemistry of ruthenium/carbon aerogel nanostructures. Langmuir 15:799–806. doi:10.1021/la980799g

    Article  Google Scholar 

  84. Thostenson ET, Ren Z, Chou T-W (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912

    Article  Google Scholar 

  85. Dresselhaus M, Eklund P (2000) Phonons in carbon nanotubes. Adv Phys 49:705–814

    Article  Google Scholar 

  86. Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  Google Scholar 

  87. Sherif A, Qingshi M, Liqun Z, Izzuddin Z, Peter M, Jun M (2015) Elastomeric composites based on carbon nanomaterials. Nanotechnology 26:112001

    Article  Google Scholar 

  88. Yao Z, Dekker C, Avouris P (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin

    Google Scholar 

  89. Li Y-L, Kinloch IA, Windle AH (2004) Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304:276–278

    Article  Google Scholar 

  90. Gui X, Wei J, Wang K et al (2010) Carbon nanotube sponges. Adv Mater 22:617–621

    Article  Google Scholar 

  91. Gui X, Cao A, Wei J et al (2010) Soft, highly conductive nanotube sponges and composites with controlled compressibility. ACS Nano 4:2320–2326. doi:10.1021/nn100114d

    Article  Google Scholar 

  92. Kim KH, Vural M, Islam MF (2011) Single-walled carbon nanotube aerogel-based elastic conductors. Adv Mater 23:2865–2869. doi:10.1002/adma.201100310

    Article  Google Scholar 

  93. Van Aken KL, Pérez CR, Oh Y et al (2015) High rate capacitive performance of single-walled carbon nanotube aerogels. Nano Energy 15:662–669. doi:10.1016/j.nanoen.2015.05.028

    Article  Google Scholar 

  94. Kim KH, Oh Y, Islam MF (2013) Mechanical and thermal management characteristics of ultrahigh surface area single-walled carbon nanotube aerogels. Adv Funct Mater 23:377–383. doi:10.1002/adfm.201201055

    Article  Google Scholar 

  95. Oh Y, Islam MF (2015) Preformed nanoporous carbon nanotube scaffold-based multifunctional polymer composites. ACS Nano 9:4103–4110. doi:10.1021/acsnano.5b00170

    Article  Google Scholar 

  96. Schiffres SN, Kim KH, Hu L, McGaughey AJH, Islam MF, Malen JA (2012) Gas diffusion, energy transport, and thermal accommodation in single-walled carbon nanotube aerogels. Adv Funct Mater 22:5251–5258. doi:10.1002/adfm.201201285

    Article  Google Scholar 

  97. Li Y, Dong L, Zhang X, Lu Y, Fang W, Yang Y (2015) Preparation of carbon nanotubes/epoxy composites using novel aerogel substrates. Mater Lett 160:432–435. doi:10.1016/j.matlet.2015.08.010

    Article  Google Scholar 

  98. Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893

    Article  Google Scholar 

  99. Dong L, Yang Q, Xu C et al (2015) Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon 90:164–171. doi:10.1016/j.carbon.2015.04.004

    Article  Google Scholar 

  100. Qi H, Mader E, Liu J (2013) Electrically conductive aerogels composed of cellulose and carbon nanotubes. J Mater Chem A 1:9714–9720. doi:10.1039/C3TA11734K

    Article  Google Scholar 

  101. Qi H, Liu J, Pionteck J, Pötschke P, Mäder E (2015) Carbon nanotube–cellulose composite aerogels for vapour sensing. Sens Actuators B Chem 213:20–26. doi:10.1016/j.snb.2015.02.067

    Article  Google Scholar 

  102. Zheng Q, Javadi A, Sabo R, Cai Z, Gong S (2013) Polyvinyl alcohol (PVA)–cellulose nanofibril (CNF)-multiwalled carbon nanotube (MWCNT) hybrid organic aerogels with superior mechanical properties. RSC Adv 3:20816–20823. doi:10.1039/C3RA42321B

    Article  Google Scholar 

  103. Kwon S-M, Kim H-S, Jin H-J (2009) Multiwalled carbon nanotube cryogels with aligned and non-aligned porous structures. Polymer 50:2786–2792

    Article  Google Scholar 

  104. Yan J, Wang H, Wu T, Li X, Ding Z (2014) Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos A Appl Sci Manuf 67:1–7

    Article  Google Scholar 

  105. Zou J, Liu J, Karakoti AS et al (2010) Ultralight multiwalled carbon nanotube aerogel. ACS Nano 4:7293–7302

    Article  Google Scholar 

  106. Wu Z, Chen Z, Du X et al (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    Article  Google Scholar 

  107. Aliev AE, Oh J, Kozlov ME et al (2009) Giant-stroke, superelastic carbon nanotube aerogel muscles. Science 323:1575–1578

    Article  Google Scholar 

  108. Kohlmeyer RR, Lor M, Deng J, Liu H, Chen J (2011) Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon 49:2352–2361

    Article  Google Scholar 

  109. Zhou W, Islam M, Wang H et al (2004) Small angle neutron scattering from single-wall carbon nanotube suspensions: evidence for isolated rigid rods and rod networks. Chem Phys Lett 384:185–189

    Article  Google Scholar 

  110. Islam M, Rojas E, Bergey D, Johnson A, Yodh A (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273

    Article  Google Scholar 

  111. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  112. Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3:15058–15064

    Article  Google Scholar 

  113. Gutiérrez MC, Hortigüela MJ, Amarilla JM, Jiménez R, Ferrer ML, del Monte F (2007) Macroporous 3D architectures of self-assembled MWCNT surface decorated with Pt nanoparticles as anodes for a direct methanol fuel cell. J Phys Chem C 111:5557–5560

    Article  Google Scholar 

  114. Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Ordered macroporous silica by ice templating. Chem Mater 17:683–689

    Article  Google Scholar 

  115. Mahler W, Bechtold MF (1980) Freeze-formed silica fibres. Nature 285:27–28

    Article  Google Scholar 

  116. H-m Tong, Noda I, Gryte CC (1984) CPS 768 Formation of anisotropic ice-agar composites by directional freezing. Colloid Polym Sci 262:589–595

    Article  Google Scholar 

  117. Fukasawa T, Ando M, Ohji T, Kanzaki S (2001) Synthesis of porous ceramics with complex pore structure by freeze-dry processing. J Am Ceram Soc 84:230–232

    Article  Google Scholar 

  118. Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184. doi:10.1002/adma.200803606

    Article  Google Scholar 

  119. Deville S (2013) Ice-templating, freeze casting: beyond materials processing. J Mater Res 28:2202–2219

    Article  Google Scholar 

  120. Mukai SR, Nishihara H, Tamon H (2003) Porous properties of silica gels with controlled morphology synthesized by unidirectional freeze-gelation. Microporous Mesoporous Mater 63:43–51

    Article  Google Scholar 

  121. Shen X, Chen L, Li D et al (2011) Assembly of colloidal nanoparticles directed by the microstructures of polycrystalline ice. ACS Nano 5:8426–8433

    Article  Google Scholar 

  122. Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20:634–648

    Article  Google Scholar 

  123. Dorcheh AS, Abbasi M (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  Google Scholar 

  124. Jiang D, Chen Z (2013) Graphene chemistry: theoretical perspectives. Wiley, New York

    Book  Google Scholar 

  125. D-e Jiang, Sumpter BG, Dai S (2007) Unique chemical reactivity of a graphene nanoribbon’s zigzag edge. J Chem Phys 126:134701

    Article  Google Scholar 

  126. Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880

    Article  Google Scholar 

  127. Kosynkin DV, Higginbotham AL, Sinitskii A et al (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876

    Article  Google Scholar 

  128. Ferralis N (2010) Probing mechanical properties of graphene with Raman spectroscopy. J Mater Sci 45:5135–5149. doi:10.1007/s10853-010-4673-3

    Article  Google Scholar 

  129. Wang SJ, Geng Y, Zheng Q, Kim J-K (2010) Fabrication of highly conducting and transparent graphene films. Carbon 48:1815–1823. doi:10.1016/j.carbon.2010.01.027

    Article  Google Scholar 

  130. Kandare E, Khatibi AA, Yoo S et al (2015) Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions. Compos A Appl Sci Manuf 69:72–82. doi:10.1016/j.compositesa.2014.10.024

    Article  Google Scholar 

  131. Yu Y, De Andrade LCX, Fang L, Ma J, Zhang W, Tang Y (2015) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50:3457–3466. doi:10.1007/s10853-015-8905-4

    Google Scholar 

  132. Mahmoud M, Maher FE-K, Hao W et al (2015) High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge. Nanotechnology 26:075702

    Article  Google Scholar 

  133. Dichiara AB, Sherwood TJ, Benton-Smith J, Wilson JC, Weinstein SJ, Rogers RE (2014) Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents. Nanoscale 6:6322–6327. doi:10.1039/C4NR01028K

    Article  Google Scholar 

  134. Li W, Dichiara A, Bai J (2013) Carbon nanotube–graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites. Compos Sci Technol 74:221–227. doi:10.1016/j.compscitech.2012.11.015

    Article  Google Scholar 

  135. Tang L-C, Wan Y-J, Yan D et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27. doi:10.1016/j.carbon.2013.03.050

    Article  Google Scholar 

  136. Wan Y-J, Tang L-C, Gong L-X et al (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480. doi:10.1016/j.carbon.2013.12.050

    Article  Google Scholar 

  137. Wan Y-J, Gong L-X, Tang L-C, Wu L-B, Jiang J-X (2014) Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos A Appl Sci Manuf 64:79–89. doi:10.1016/j.compositesa.2014.04.023

    Article  Google Scholar 

  138. Huang J, Tang Z, Yang Z, Guo B (2016) Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal–ligand bonds. Macromol Rapid Commun. doi:10.1002/marc.201600226

    Google Scholar 

  139. Liu X, Kuang W, Guo B (2015) Preparation of rubber/graphene oxide composites with in situ interfacial design. Polymer 56:553–562. doi:10.1016/j.polymer.2014.11.048

    Article  Google Scholar 

  140. Tang Z, Zhang L, Feng W, Guo B, Liu F, Jia D (2014) Rational design of graphene surface chemistry for high-performance rubber/graphene composites. Macromolecules 47:8663–8673. doi:10.1021/ma502201e

    Article  Google Scholar 

  141. Yousefi N, Sun X, Lin X et al (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487. doi:10.1002/adma.201305293

    Article  Google Scholar 

  142. Yousefi N, Gudarzi MM, Zheng Q et al (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos A Appl Sci Manuf 49:42–50. doi:10.1016/j.compositesa.2013.02.005

    Article  Google Scholar 

  143. Araby S, Zhang L, Kuan H-C, Dai J-B, Majewski P, Ma J (2013) A novel approach to electrically and thermally conductive elastomers using graphene. Polymer 54:3663–3670. doi:10.1016/j.polymer.2013.05.014

    Article  Google Scholar 

  144. Meng Q, Jin J, Wang R et al (2014) Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology 25:125707

    Article  Google Scholar 

  145. Tang G, Jiang Z-G, Li X, Zhang H-B, Dasari A, Yu Z-Z (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599

    Article  Google Scholar 

  146. Araby S, Meng Q, Zhang L et al (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210. doi:10.1016/j.polymer.2013.11.032

    Article  Google Scholar 

  147. Araby S, Zaman I, Meng Q et al (2013) Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 24:165601

    Article  Google Scholar 

  148. Yu C, Li D, Wu W, Luo C, Zhang Y, Pan C (2014) Mechanical property enhancement of PVDF/graphene composite based on a high-quality graphene. J Mater Sci 49:8311–8316. doi:10.1007/s10853-014-8539-y

    Article  Google Scholar 

  149. Zhang L, Chen G, Hedhili MN, Zhang H, Wang P (2012) Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale 4:7038–7045

    Article  Google Scholar 

  150. Jia J, Sun X, Lin X, Shen X, Mai Y-W, Kim J-K (2014) Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites. ACS Nano 8:5774–5783

    Article  Google Scholar 

  151. Dong X-C, Xu H, Wang X-W et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  Google Scholar 

  152. Dong X, Wang X, Wang L et al (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4:3129–3133

    Article  Google Scholar 

  153. Xu Y, Sheng K, Li C, Shi G (2010) Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4:4324–4330

    Article  Google Scholar 

  154. Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137

    Article  Google Scholar 

  155. Wang Z, Shen X, Akbari Garakani M et al (2015) Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties. ACS Appl Mater Interfaces 7:5538–5549

    Article  Google Scholar 

  156. Hsieh T-H, Huang Y-S, Shen M-Y (2015) Mechanical properties and toughness of carbon aerogel/epoxy polymer composites. J Mater Sci 50:3258–3266

    Google Scholar 

  157. Yin S, Zhang Y, Kong J et al (2011) Assembly of graphene sheets into hierarchical structures for high-performance energy storage. ACS Nano 5:3831–3838

    Article  Google Scholar 

  158. Lee SH, Kim HW, Hwang JO et al (2010) Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew Chem Int Ed 49:10084–10088

    Article  Google Scholar 

  159. Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133:6122–6125

    Article  Google Scholar 

  160. Wang CC, Chen HC, Lu SY (2014) Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material. Chemistry 20:517–523

    Article  Google Scholar 

  161. Guo P, Song H, Chen X (2010) Hollow graphene oxide spheres self-assembled by W/O emulsion. J Mater Chem 20:4867–4874

    Article  Google Scholar 

  162. Zhao Y, Liu J, Hu Y et al (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595

    Article  Google Scholar 

  163. Hu H, Zhao Z, Wan W, Gogotsi Y, Qiu J (2013) Ultralight and highly compressible graphene aerogels. Adv Mater 25:2219–2223

    Article  Google Scholar 

  164. Li J, Li J, Meng H et al (2014) Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J Mater Chem A 2:2934–2941

    Article  Google Scholar 

  165. Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271

    Article  Google Scholar 

  166. Han Z, Tang Z, Li P, Yang G, Zheng Q, Yang J (2013) Ammonia solution strengthened three-dimensional macro-porous graphene aerogel. Nanoscale 5:5462–5467

    Article  Google Scholar 

  167. Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497

    Article  Google Scholar 

  168. Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241

    Article  Google Scholar 

  169. Araby S, Saber N, Ma X et al (2015) Implication of multi-walled carbon nanotubes on polymer/graphene composites. Mater Des 65:690–699. doi:10.1016/j.matdes.2014.09.069

    Article  Google Scholar 

  170. Wei H, Gu H, Guo J, Wei S, Guo Z (2013) Electropolymerized polyaniline nanocomposites from multi-walled carbon nanotubes with tuned surface functionalities for electrochemical energy storage. J Electrochem Soc 160:G3038–G3045

    Article  Google Scholar 

  171. Joo Jeong Y, Islam MF (2015) Compressible elastomeric aerogels of hexagonal boron nitride and single-walled carbon nanotubes. Nanoscale 7:12888–12894. doi:10.1039/C5NR01981H

    Article  Google Scholar 

  172. Worsley MA, Pauzauskie PJ, Kucheyev SO et al (2009) Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading. Acta Mater 57:5131–5136

    Article  Google Scholar 

  173. Worsley MA, Satcher JH Jr, Baumann TF (2008) Synthesis and characterization of monolithic carbon aerogel nanocomposites containing double-walled carbon nanotubes. Langmuir 24:9763–9766

    Article  Google Scholar 

  174. Worsley MA, Kucheyev SO, Satcher JH Jr, Hamza AV, Baumann TF (2009) Mechanically robust and electrically conductive carbon nanotube foams. Appl Phys Lett 94:073115

    Article  Google Scholar 

  175. Satcher JH Jr (2009) Stiff and electrically conductive composites of carbon nanotube aerogels and polymers. J Mater Chem 19:3370–3372

    Article  Google Scholar 

  176. Charnvanichborikarn S, Shin S, Worsley M et al (2014) Nanoporous Cu–C composites based on carbon-nanotube aerogels. J Mater Chem A 2:962–967

    Article  Google Scholar 

  177. Kim KH, Oh Y, Islam MF (2012) Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nat Nano 7:562–566. http://www.nature.com/nnano/journal/v7/n9/abs/nnano.2012.118.html#supplementary-information

  178. Zhang KJ, Yadav A, Kim KH et al (2013) Thermal and electrical transport in ultralow density single-walled carbon nanotube networks. Adv Mater 25:2926–2931. doi:10.1002/adma.201300059

    Article  Google Scholar 

  179. Tang L, Li X, Ji R et al (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mater Chem 22:5676–5683

    Article  Google Scholar 

  180. Wilson E, Islam MF (2015) Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels. ACS Appl Mater Interfaces 7:5612–5618

    Article  Google Scholar 

  181. Peng Q, Li Y, He X et al (2014) Graphene nanoribbon aerogels unzipped from carbon nanotube sponges. Adv Mater 26:3241–3247. doi:10.1002/adma.201305274

    Article  Google Scholar 

  182. Hu H, Zhao Z, Gogotsi Y, Qiu J (2014) Compressible carbon nanotube–graphene hybrid aerogels with superhydrophobicity and superoleophilicity for oil sorption. Environ Sci Technol Lett 1:214–220. doi:10.1021/ez500021w

    Article  Google Scholar 

  183. Wan W, Zhang R, Li W et al (2016) Graphene-carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ Sci Nano 3:107–113. doi:10.1039/C5EN00125K

    Article  Google Scholar 

  184. Lee B, Lee S, Lee M et al (2015) Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification. Nanoscale 7:6782–6789. doi:10.1039/C5NR01018G

    Article  Google Scholar 

  185. Wang Y, Shi Z, Huang Y et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107. doi:10.1021/jp902214f

    Article  Google Scholar 

  186. Lee YJ, Jung JC, Yi J, Baeck S-H, Yoon JR, Song IK (2010) Preparation of carbon aerogel in ambient conditions for electrical double-layer capacitor. Curr Appl Phys 10:682–686. doi:10.1016/j.cap.2009.08.017

    Article  Google Scholar 

  187. Fang B, Binder L (2006) A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J Power Sources 163:616–622. doi:10.1016/j.jpowsour.2006.09.014

    Article  Google Scholar 

  188. Chen W, Li S, Chen C, Yan L (2011) Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv Mater 23:5679–5683. doi:10.1002/adma.201102838

    Article  Google Scholar 

  189. Campbell AS, Jeong YJ, Geier SM, Koepsel RR, Russell AJ, Islam MF (2015) Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes. ACS Appl Mater Interfaces 7:4056–4065. doi:10.1021/am507801x

    Article  Google Scholar 

  190. Yang X, Li C, Zhang G, Yang C (2015) Polystyrene-derived carbon with hierarchical macro–meso–microporous structure for high-rate lithium-ion batteries application. J Mater Sci 50:6649–6655. doi:10.1007/s10853-015-9214-7

    Article  Google Scholar 

  191. Zhang Y, Wu X, Fu Y, Shen W, Zeng X, Ding W (2014) Carbon aerogel supported Pt–Zn catalyst and its oxygen reduction catalytic performance in magnesium-air batteries. J Mater Res 29:2863–2870. doi:10.1557/jmr.2014.343

    Article  Google Scholar 

  192. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  Google Scholar 

  193. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  Google Scholar 

  194. Sui Z, Meng Q, Zhang X, Ma R, Cao B (2012) Green synthesis of carbon nanotube-graphene hybrid aerogels and their use as versatile agents for water purification. J Mater Chem 22:8767–8771. doi:10.1039/C2JM00055E

    Article  Google Scholar 

  195. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    Article  Google Scholar 

  196. Xia K, Gao Q, Wu C, Song S, Ruan M (2007) Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3. Carbon 45:1989–1996. doi:10.1016/j.carbon.2007.06.002

    Article  Google Scholar 

  197. Guan C, Wang K, Yang C, Zhao XS (2009) Characterization of a zeolite-templated carbon for H2 storage application. Microporous Mesoporous Mater 118:503–507. doi:10.1016/j.micromeso.2008.09.029

    Article  Google Scholar 

  198. Chen L, Wang X, Zhang X, Zhang H (2012) 3D porous and redox-active prussian blue-in-graphene aerogels for highly efficient electrochemical detection of H2O2. J Mater Chem 22:22090–22096. doi:10.1039/C2JM34541B

    Article  Google Scholar 

  199. Scherer GW, Smith DM, Stein D (1995) Deformation of aerogels during characterization. J Non Cryst Solids 186:309–315

    Article  Google Scholar 

  200. Sun H, La P, Zhu Z et al (2014) Hydrophobic carbon nanotubes for removal of oils and organics from water. J Mater Sci 49:6855–6861

    Article  Google Scholar 

  201. Humplik T, Lee J, O’Hern SC et al (2011) Nanostructured materials for water desalination. Nanotechnology 22:292001

    Article  Google Scholar 

  202. Srivastava A, Srivastava O, Talapatra S, Vajtai R, Ajayan P (2004) Carbon nanotube filters. Nat Mater 3:610–614

    Article  Google Scholar 

  203. Li X, Zhu G, Dordick JS, Ajayan PM (2007) Compression-modulated tunable-pore carbon-nanotube membrane filters. Small 3:595–599

    Article  Google Scholar 

  204. Samad YA, Li Y, Alhassan SM, Liao K (2015) Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl Mater Interfaces 7:9195–9202

    Article  Google Scholar 

  205. Zhang T, Chang H, Wu Y et al (2015) Macroscopic and direct light propulsion of bulk graphene material. Nat Photon 9:471–476. doi:10.1038/nphoton.2015.105

    Article  Google Scholar 

  206. Li X, Chen Y, Kumar A, Mahmoud A, Nychka JA, Chung H-J (2015) Sponge-templated macroporous graphene network for piezoelectric ZnO nanogenerator. ACS Appl Mater Interfaces 7:20753–20760. doi:10.1021/acsami.5b05702

    Article  Google Scholar 

  207. Ma J, Mo MS, Du XS, Dai SR, Luck I (2008) Study of epoxy toughened by in situ formed rubber nanoparticles. J Appl Polym Sci 110:304–312

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank financial support by the Australian Research Council (LP140100605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araby, S., Qiu, A., Wang, R. et al. Aerogels based on carbon nanomaterials. J Mater Sci 51, 9157–9189 (2016). https://doi.org/10.1007/s10853-016-0141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0141-z

Keywords

Navigation