Skip to main content
Log in

Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of efficient sub-10 nm ultrasmall upconversion nanoparticles will open the door to the exciting application in biological labelling and imaging. In this paper, we demonstrated a facile method for the synthesis of monodisperse sub-10 nm hexagonal-phased LaF3 nanoparticles doped with upconverting lanthanide ions (Yb3+/Ln3+, Ln = Er3+, Tm3+, and Ho3+). The particle size of the as-synthesized LaF3 nanoparticles can be tuned by varying the preparation temperature. Upon excitation at 980 nm, the LaF3:Yb3+/Ln3+ nanoparticles showed intense upconversion emissions, and the colour output can be precisely modulated by changing the species and concentration of the lanthanide activators. In order to further enhance the upconversion emission intensity of the ultrasmall LaF3:Yb3+/Ln3+ nanoparticles, we adopted the strategy of core–shell nanostructured design to minimize the surface quenching effect. After coating an inert LaF3 shell, a maximum ninefold enhancement in upconversion luminescence was achieved under 980 nm excitation. These as-prepared lanthanide-doped LaF3 upconversion nanoparticles may find promising applications in biomedicine fields as luminescent nanoprobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu X, Yan C-H, Capobianco JA (2015) Photon upconversion nanomaterials. Chem Soc Rev 44:1299. doi:10.1039/C5CS90009C

    Article  Google Scholar 

  2. Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924. doi:10.1039/C3CS60060B

    Article  Google Scholar 

  3. Zeng S, Wang H, Lu W et al (2014) Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. Biomaterials 35:2934. doi:10.1016/j.biomaterials.2013.11.082

    Article  Google Scholar 

  4. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323. doi:10.1039/C1CS15187H

    Article  Google Scholar 

  5. Wei Z, Sun L, Liu J et al (2014) Cysteine modified rare-earth up-converting nanoparticles for in vitro and in vivo bioimaging. Biomaterials 35:387. doi:10.1016/j.biomaterials.2013.09.110

    Article  Google Scholar 

  6. Yang D, P Ma P, Cheng Z, Hou Z, Li C, Lin J (2015) Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44:1416. doi:10.1039/C4CS00155A

    Article  Google Scholar 

  7. Chen D, Liu L, Huang P, Ding M, Zhong J, Ji Z (2015) Nd3+-sensitized Ho3+ single-band red upconversion luminescence in core–shell nanoarchitecture. J Phys Chem Lett 6:2833. doi:10.1021/acs.jpclett.5b01180

    Article  Google Scholar 

  8. Chen D, Chen Y, Lu H, Ji Z (2014) A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence. Inorg Chem 53:8638. doi:10.1021/ic501238u

    Article  Google Scholar 

  9. Gai S, Li C, Yang P, Lin J (2013) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114:2343. doi:10.1021/cr4001594

    Article  Google Scholar 

  10. Dai Y, Xiao H, Liu J et al (2013) In Vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc 135:18920. doi:10.1021/ja410028q

    Article  Google Scholar 

  11. Dai Y, Ma P, Cheng Z et al (2012) Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@Hydrogel core–shell hybrid microspheres. ACS Nano 6:3327. doi:10.1021/nn300303q

    Article  Google Scholar 

  12. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in Vivo. J Am Chem Soc 133:17122. doi:10.1021/ja207078s

    Article  Google Scholar 

  13. Wong H-T, Vetrone F, Naccache R, Chan HLW, Hao J, Capobianco JA (2011) Water dispersible ultra-small multifunctional KGdF4:Tm3 + , Yb3 + nanoparticles with near-infrared to near-infrared upconversion. J Mater Chem 21:16589. doi:10.1039/c1jm12796a

    Article  Google Scholar 

  14. Chen G, Ohulchanskyy TY, Kumar R, Ågren H, Prasad PN (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4:3163. doi:10.1021/nn100457j

    Article  Google Scholar 

  15. Chen G, Qiu H, Fan R et al (2012) Lanthanide-doped ultrasmall yttrium fluoride nanoparticles with enhanced multicolor upconversion photoluminescence. J Mater Chem 22:20190. doi:10.1039/C2JM32298F

    Article  Google Scholar 

  16. Chen G, Ohulchanskyy TY, Law WC, Agren H, Prasad PN (2011) Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 3:2003. doi:10.1039/C0NR01018A

    Article  Google Scholar 

  17. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3:703. doi:10.2217/17435889.3.5.703

    Article  Google Scholar 

  18. Huang X (2015) Dual-model upconversion luminescence from NaGdF4:Nd/Yb/Tm@NaGdF4:Eu/Tb core–shell nanoparticles. J Alloys Compd 628:240. doi:10.1016/j.jallcom.2014.12.178

    Article  Google Scholar 

  19. Gao D, Zhang X, Zheng H, Shi P, Li L, Ling Y (2013) Codopant ion-induced tunable upconversion emission in β-NaYF4:Yb3+/Tm3+ nanorods. Dalton Trans 42:1834. doi:10.1039/C2DT31814H

    Article  Google Scholar 

  20. T Jiang, W Qin, J Zhou (2014) J Alloys Compd 593:79. doi:10.1016/j.jallcom.2014.01.048

  21. Chen D, Huang P (2014) Highly intense upconversion luminescence in Yb/Er:NaGdF4@NaYF4 core-shell nanocrystals with complete shell enclosure of the core. Dalton Trans 43:11299. doi:10.1039/C4DT01237B

    Article  Google Scholar 

  22. Chen D, Wan Z, Zhou Y et al (2015) Dual-phase glass ceramic: structure, dual-modal luminescence, and temperature sensing behaviors. ACS Appl Mater Interfaces 7:19484. doi:10.1021/acsami.5b06036

    Article  Google Scholar 

  23. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20:6831. doi:10.1039/C0JM00031K

    Article  Google Scholar 

  24. Gai S, Yang P, Li C et al (2010) Synthesis of magnetic, up-conversion luminescent, and mesoporous core–shell-structured nanocomposites as drug carriers. Adv Funct Mater 20:1166. doi:10.1002/adfm.200902274

    Article  Google Scholar 

  25. Zhuang J, Yang X, Fu J et al (2013) Monodispersed β-NaYF4 mesocrystals. In Situ ion exchange and multicolor up- and down-conversions. Cryst Growth Des 13:2292. doi:10.1021/cg301751c

    Article  Google Scholar 

  26. Gao D, Tian D, Xiao G, Chong B, Yu G, Pang Q (2015) Up/down conversion switching by adjusting the pulse width of red laser beams in LaF3:Tm3+ nanocrystals. Opt Lett 40:3580. doi:10.1364/OL.40.003580

    Article  Google Scholar 

  27. Ma J, Huang P, He M et al (2012) Folic acid-conjugated LaF3:Yb, Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. J Phys Chem B 116:14062. doi:10.1021/jp309059u

    Article  Google Scholar 

  28. Sivakumar S, Boyer J-C, Bovero E, van Veggel FCJM (2009) Up-conversion of 980 nm light into white light from sol–gel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles. J Mater Chem 19:2392. doi:10.1039/b818397j

    Article  Google Scholar 

  29. Bai X, Li D, Liu Q, Dong B, Xu S, Song H (2012) Concentration-controlled emission in LaF3:Yb3+/Tm3+ nanocrystals: switching from UV to NIR regions. J Mater Chem 22:24698. doi:10.1039/C2JM35403A

    Article  Google Scholar 

  30. Li F, Li C, Liu X et al (2013) Microwave-assisted synthesis and up-down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3+ nanocrystals. Dalton Trans 42:2015. doi:10.1039/C2DT32295A

    Article  Google Scholar 

  31. Bao L, Li Z, Tao Q, Xie J, Mei Y, Xiong Y (2013) Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands. Nanotechnology 24:145604. doi:10.1088/0957-4484/24/14/145604

    Article  Google Scholar 

  32. Huang X (2015) Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm. Opt Lett 40:3599. doi:10.1364/OL.40.003599

    Article  Google Scholar 

  33. Li D, Shao Q, Dong Y, Jiang J (2014) Temperature sensitivity and stability of NaYF4:Yb3+, Er3+ core-only and core–shell upconversion nanoparticles. J Alloys Compd 617:1. doi:10.1016/j.jallcom.2014.07.197

    Article  Google Scholar 

  34. Huang X, Lin J (2015) Active-core/active-shell nanostructured design: an effective strategy to enhance Nd3+/Yb3+ cascade sensitized upconversion luminescence in lanthanide-doped nanoparticles. J Mater Chem C 3:7652. doi:10.1039/C5TC01438G

    Article  Google Scholar 

  35. Wang M, Mi C, Zhang Y et al (2009) NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J Phys Chem C 113:19021. doi:10.1021/jp906394z

    Article  Google Scholar 

  36. Chen D, Wan Z, Zhou Y et al (2015) Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior. J Alloys Compd 638:21. doi:10.1016/j.jallcom.2015.02.170

    Article  Google Scholar 

  37. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42:173. doi:10.1039/C2CS35288E

    Article  Google Scholar 

  38. Li X, Wang R, Zhang F, Zhao D (2014) Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett 14:3634. doi:10.1021/nl501366x

    Article  Google Scholar 

  39. Ding M, Ni Y, Song Y et al (2015) Li+ ions doping core–shell nanostructures: an approach to significantly enhance upconversion luminescence of lanthanide-doped nanocrystals. J Alloys Compd 623:42. doi:10.1016/j.jallcom.2014.10.089

    Article  Google Scholar 

  40. Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721. doi:10.1021/jp073920d

    Article  Google Scholar 

  41. Johnson NJJ, Korinek A, Dong C, van Veggel FCJM (2012) Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J Am Chem Soc 134:11068. doi:10.1021/ja302717u

    Article  Google Scholar 

  42. Dong H, Sun L-D, Wang Y-F et al (2015) Efficient tailoring of upconversion selectivity by engineering local structure of lanthanides in NaxREF3+x nanocrystals. J Am Chem Soc 137:6569. doi:10.1021/jacs.5b01718

    Article  Google Scholar 

  43. Zhang F, Shi Q, Zhang Y et al (2011) Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv Mater 23:3775. doi:10.1002/adma.201101868

    Google Scholar 

  44. Ren G, Zeng S, Hao J (2011) Tunable multicolor upconversion emissions and paramagnetic property of monodispersed bifunctional lanthanide-doped NaGdF4 nanorods. J Phys Chem C 115:20141. doi:10.1021/jp2064529

    Article  Google Scholar 

  45. Boyer J-C, van Veggel FCJM (2010) Absolute quantum yield measurements of colloidal NaYF4:Er3 + , Yb3 + upconverting nanoparticles. Nanoscale 2:1417. doi:10.1039/C0NR00253D

    Article  Google Scholar 

  46. Zhang F, Che R, Li X et al (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett 12:2852. doi:10.1021/nl300421n

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51502190), the Start-up Research Grant of Taiyuan University of Technology (No. Tyut-rc201489a), the Excellent Young Scholars Research Grant of Taiyuan University of Technology (No. 2014YQ009), and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, No. 2015-skllmd-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X. Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3:Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles. J Mater Sci 51, 3490–3499 (2016). https://doi.org/10.1007/s10853-015-9667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9667-8

Keywords

Navigation