Skip to main content

Advertisement

Log in

Evidence for an early softening behavior in pure copper processed by high-pressure torsion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure copper of 99.99 % purity was processed by high-pressure torsion under a pressure of 6.0 GPa at room temperature through various numbers of turns from 1/4 to 10. Microhardness measurements show that the hardness initially increases to a maximum value at a strain of ~5.6, decreases to a strain of ~8.4, and then increases slowly to a saturation condition at strains at and above ~80. These data are interpreted in terms of the advent of dynamic recrystallization. The results have similarities and differences to the softening with recovery that is well established in high-purity aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189

    Article  Google Scholar 

  2. Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817

    Article  Google Scholar 

  3. Langdon TG (2013) Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Mater 61:7035–7059

    Article  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53:893–979

    Article  Google Scholar 

  5. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  6. Zhilyaev AP, Lee S, Nurislamova GV, Valiev RZ, Langdon TG (2001) Microhardness and microstructural evolution in pure nickel during high-pressure torsion. Scr Mater 44:2753–2758

    Article  Google Scholar 

  7. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51:753–765

    Article  Google Scholar 

  8. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48:4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  9. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater 44:4705–4712

    Article  Google Scholar 

  10. Vorhauer A, Pippan R (2004) On the homogeneity of deformation by high pressure torsion. Scr Mater 51:921–925

    Article  Google Scholar 

  11. Edalati K, Horita Z (2011) Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater Sci Eng A 528:7514–7523

    Article  Google Scholar 

  12. Sabbaghianrad S, Langdon TG (2014) A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng A 596:52–58

    Article  Google Scholar 

  13. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  14. Kawasaki M, Ahn B, Langdon TG (2010) Microstructural evolution in a two-phase alloy processed by high-pressure torsion. Acta Mater 58:919–930. doi:10.1007/s10853-012-7087-6

    Article  Google Scholar 

  15. Xu C, Horita Z, Langdon TG (2007) The evolution of homogeneity in processing by high-pressure torsion. Acta Mater 55:203–212

    Article  Google Scholar 

  16. Harai Y, Ito Y, Horita Z (2008) High-pressure torsion using ring specimens. Scr Mater 58:469–472

    Article  Google Scholar 

  17. Ito Y, Horita Z (2009) Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A 503:32–36

    Article  Google Scholar 

  18. Edalati K, Horita Z (2009) Scaling-up of high pressure torsion using ring shape. Mater Trans 50:92–95

    Article  Google Scholar 

  19. Kawasaki M, Ahn B, Langdon TG (2010) Effect of strain reversals on the processing of high-purity aluminum by high-pressure torsion. J Mater Sci 45:4583–4593. doi:10.1007/s10853-010-4420-9

    Article  Google Scholar 

  20. Xu C, Horita Z, Langdon TG (2010) Microstructural evolution in pure aluminum in the early stages of processing by high-pressure torsion. Mater Trans 51:2–7

    Article  Google Scholar 

  21. Kawasaki M, Figueiredo RB, Langdon TG (2011) An investigation of hardness homogeneity throughout disks processed by high-pressure torsion. Acta Mater 59:308–316

    Article  Google Scholar 

  22. Edalati K, Horita Z, Furuta T, Kuramoto S (2013) Dynamic recrystallization and recovery during high-pressure torsion: experimental evidence by torque measurement using ring specimens. Mater Sci Eng A 559:506–509

    Article  Google Scholar 

  23. Edalati K, Yamamoto A, Horita Z, Ishihara T (2011) High-pressure torsion of pure magnesium: evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain. Scr Mater 64:880–883

    Article  Google Scholar 

  24. Xu C, Horita Z, Langdon TG (2008) The evolution of homogeneity in an aluminum alloy processed using high-pressure torsion. Acta Mater 56:5168–5176

    Article  Google Scholar 

  25. Xu C, Langdon TG (2009) Three-dimensional representations of hardness distributions after processing by high-pressure torsion. Mater Sci Eng A 503:71–74

    Article  Google Scholar 

  26. Jiang H, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A 290:128–138

    Article  Google Scholar 

  27. Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng A 497:168–173

    Article  Google Scholar 

  28. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scr Mater 63:560–563

    Article  Google Scholar 

  29. An XH, Lin QY, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion. Philos Mag 91:3307–3326

    Article  Google Scholar 

  30. Almazrouee AI, Al-Fadalah KJ, Alhajeri SN, Langdon TG (2015) Microstructure and microhardness of OFHC copper processed by high-pressure torsion. Mater Sci Eng A 641:21–28

    Article  Google Scholar 

  31. Balasundar I, Ravi KR, Raghu T (2013) Strain softening in oxygen free high conductivity (OFHC) copper subjected to repetitive upsetting-extrusion (RUE) process. Mater Sci Eng A 583:114–122

    Article  Google Scholar 

  32. Figueiredo RB, Cetlin PR, Langdon TG (2011) Using finite element modeling to examine the flow processes in quasi-constrained high-pressure torsion. Mater Sci Eng A 528:8198–8204

    Article  Google Scholar 

  33. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion. Acta Mater 60:3190–3198

    Article  Google Scholar 

  34. Kawasaki M, Langdon TG (2008) The significance of strain reversals during processing by high-pressure torsion. Mater Sci Eng A 498:341–348

    Article  Google Scholar 

  35. Almazrouee AI, Al-Fadhalah KJ, Alhajeri SN, Langdon TG (2015) Microstructure and microhardness of OFHC copper processed by high-pressure torsion. Mater Sci Eng A 641:21–28

    Article  Google Scholar 

  36. Edalati K, Ito Y, Suehiro K, Horita Z (2009) Softening of high purity aluminum and copper processed by high pressure torsion. Int J Mater Res 100:1668–1673

    Article  Google Scholar 

  37. Al-Fadalah KJ, Alhajeri SN, Almazrouee AI, Langdon TG (2013) Microstructure and microtexture in pure copper processed by high-pressure torsion. J Mater Sci 48:4563–4572. doi:10.1007/s10853-013-7200-5

    Article  Google Scholar 

  38. Hohenwarter A (2015) Incremental high pressure torsion as a novel severe plastic deformation process: processing features and application to copper. Mater Sci Eng A 626:80–85

    Article  Google Scholar 

  39. Edalati K, Miresmaeili R, Horita Z, Kanayama H, Pippan R (2011) Significance of temperature increase in processing by high-pressure torsion. Mater Sci Eng A 528:7301–7305

    Article  Google Scholar 

  40. Pereira PHR, Figueiredo RB, Huang Y, Cetlin PR, Langdon TG (2014) Modeling the temperature rise in high-pressure torsion. Mater Sci Eng A 593:185–188

    Article  Google Scholar 

  41. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy. J Mater Res 11:1880–1890. doi:10.1557/JMR.1996.0239

    Article  Google Scholar 

  42. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J Appl Phys 96:636–640

    Article  Google Scholar 

  43. Chinh NQ, Szommer P, Horita Z, Langdon TG (2006) Experimental evidence for grain-boundary sliding in ultrafine-grained aluminum processed by severe plastic deformation. Adv Mater 18:34–39

    Article  Google Scholar 

  44. Chinh NQ, Szommer P, Csanádi T, Langdon TG (2006) Flow processes at low temperatures in ultrafine-grained aluminum. Mater Sci Eng A 434:326–334

    Article  Google Scholar 

  45. Chinh NQ, Csanádi T, Györi T, Valiev RZ, Straumal BB, Kawasaki M, Langdon TG (2012) Strain rate sensitivity in an ultrafine-grained Al-30wt.% Zn alloy using micro- and nanoindentation. Mater Sci Eng A 543:117–120

    Article  Google Scholar 

  46. Chinh NQ, Györi T, Valiev RZ, Straumal BB, Varga G, Havancsák K, Langdon TG (2012) Observations of unique plastic behavior in micro-pillars of an ultrafine-grained alloy. MRS Commun 2:75–78

    Article  Google Scholar 

  47. Chinh NQ, Valiev RZ, Sauvage X, Varga G, Havancsák K, Kawasaki M, Straumal BB, Langdon TG (2014) Grain boundary phenomena in an ultrafine-grained Al-Zn alloy with improved mechanical behavior for micro-devices. Adv Eng Mater 16:1000–1009

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51375111 and 51475124, the National Science Foundation of the United States under Grant No. DMR-1160966, and the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS. Partial support was also provided by the National Basic Research Program of China under Grant No. 2012CB934100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Guo or Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, J., Wang, C.T. et al. Evidence for an early softening behavior in pure copper processed by high-pressure torsion. J Mater Sci 51, 1923–1930 (2016). https://doi.org/10.1007/s10853-015-9499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9499-6

Keywords

Navigation