Skip to main content

Advertisement

Log in

Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study focuses on improving the speed of actuation of poly(N-isopropylacrylamide)-based photoresponsive gels containing copolymerised spiropyran as the photoswitch and acrylic acid as the proton source. The improvement is realised by introducing pores into the material. For this purpose, polyethylene glycol (PEG) of two molecular weights (2000 and 20000 g mol−1) has been used as the porophore in the polymerisation mixture. Upon removal of the PEG porophore post polymerisation, hydrogels of different pore sizes were obtained. This impacts the diffusion of water molecules moving in/out of the hydrogel matrix, thus improving the swelling and shrinking kinetics of the hydrogel due to reduction of the average diffusion pathlength. Most significant improvement was observed in the reswelling step and is demonstrated with optical microscopy combined with kinetic ultraviolet–visible spectroscopy (UV–Vis) analysis. Scanning electron microscopy reveals the PEG-induced pores to be in the range of 0.1–2 μm. Moreover, the mechanical stability of the gels is confirmed with rheometry. Lastly, the presented photoresponsive porous gels exhibit an order of magnitude faster reswelling rate compared to the non-PEG-produced control sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yoshida R (2010) Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv Mater 22:3463–3483

    Article  Google Scholar 

  2. Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A (2005) Smart materials as scaffolds for tissue engineering. J Cell Physiol 203:465–470

    Article  Google Scholar 

  3. Barber ZH, Clyne TW, Sittner P (2014) Smart materials. Mater Sci Technol 30:1515–1516

    Article  Google Scholar 

  4. Buwalda SJ, Boere KWM, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE (2014) Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 190:254–273

    Article  Google Scholar 

  5. de las Heras Alarcon C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285

    Article  Google Scholar 

  6. S-k Ahn, Kasi RM, Kim S-C, Sharma N, Zhou Y (2008) Stimuli-responsive polymer gels. Soft Matter 4:1151–1157

    Article  Google Scholar 

  7. Pasparakis G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234–1248

    Article  Google Scholar 

  8. Byrne R, Benito-Lopez F, Diamond D (2010) Materials science and the sensor revolution. Mater Today 13:9–16

    Article  Google Scholar 

  9. Ziółkowski B, Czugala M, Diamond D (2013) Integrating stimulus responsive materials and microfluidics: the key to next-generation chemical sensors. J Intell Mater Syst Struct 24:2221

    Article  Google Scholar 

  10. Schild HG (1992) Poly (n-isopropylacrylamide)—experiment, theory and application. Prog Polym Sci 17:163–249

    Article  Google Scholar 

  11. Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo B-H (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  Google Scholar 

  12. Satarkar NS, Zhang W, Eitel RE, Hilt JZ (2009) Magnetic hydrogel nanocomposites as remote controlled microfluidic valves. Lab Chip 9:1773–1779

    Article  Google Scholar 

  13. Sugiura S, Sumaru K, Ohi K, Hiroki K, Takagi T, Kanamori T (2007) Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens Actuator A Phys 140:176–184

    Article  Google Scholar 

  14. Benito-Lopez F, Byrne R, Raduta AM, Vrana NE, McGuinness G, Diamond D (2010) Ionogel-based light-actuated valves for controlling liquid flow in micro-fluidic manifolds. Lab Chip 10:195–201

    Article  Google Scholar 

  15. Florea L, Hennart A, Diamond D, Benito-Lopez F (2012) Synthesis and characterisation of spiropyran-polymer brushes in micro-capillaries: towards an integrated optical sensor for continuous flow analysis. Sens Actuator B Chem 175:92–99

    Article  Google Scholar 

  16. Florea L, Scarmagnani S, Benito-Lopez F, Diamond D (2014) Self-assembled solvato-morphologically controlled photochromic crystals. Chem Commun 50:924–926

    Article  Google Scholar 

  17. Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104:2751–2776

    Article  Google Scholar 

  18. Wagner K, Zanoni M, Elliott ABS, Wagner P, Byrne R, Florea LE, Diamond D, Gordon KC, Wallace GG, Officer DL (2013) A merocyanine-based conductive polymer. J Mater Chem C 1:3913–3916

    Article  Google Scholar 

  19. Wagner K, Byrne R, Zanoni M, Gambhir S, Dennany L, Breukers R, Higgins M, Wagner P, Diamond D, Wallace GG, Officer DL (2011) A multiswitchable poly(terthiophene) bearing a spiropyran functionality: understanding photo- and electrochemical control. J Am Chem Soc 133:5453–5462

    Article  Google Scholar 

  20. Oms O, Hakouk K, Dessapt R, Deniard P, Jobic S, Dolbecq A, Palacin T, Nadjo L, Keita B, Marrot J, Mialane P (2012) Photo- and electrochromic properties of covalently connected symmetrical and unsymmetrical spiropyran-polyoxometalate dyads. Chem Commun 48:12103–12105

    Article  Google Scholar 

  21. Florea L, McKeon A, Diamond D, Benito-Lopez F (2013) Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. Langmuir 29:2790–2797

    Article  Google Scholar 

  22. Florea L, Diamond D, Benito-Lopez F (2012) Photo-responsive polymeric structures based on spiropyran. Macromol Mater Eng 297:1148–1159

    Article  Google Scholar 

  23. Stumpel JE, Ziółkowski B, Florea L, Diamond D, Broer DJ, Schenning APHJ (2014) Photoswitchable ratchet surface topographies based on self-protonating spiropyran–NIPAAM hydrogels. ACS Appl Mater Interface 6:7268–7274

    Article  Google Scholar 

  24. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184

    Article  Google Scholar 

  25. Sumaru K, Ohi K, Takagi T, Kanamori T, Shinbo T (2006) Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22:4353–4356

    Article  Google Scholar 

  26. Sugiura S, Szilagyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, Zrinyi M, Kanamori T (2009) On-demand microfluidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip 9:196–198

    Article  Google Scholar 

  27. Satoh T, Sumaru K, Takagi T, Kanamori T (2011) Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylacrylamide). Soft Matter 7:8030–8034

    Article  Google Scholar 

  28. Boutris C, Chatzi EG, Kiparissides C (1997) Characterization of the LCST behaviour of aqueous poly(N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer 38:2567–2570

    Article  Google Scholar 

  29. Barker IC, Cowie JMG, Huckerby TN, Shaw DA, Soutar I, Swanson L (2003) Studies of the “smart” thermoresponsive behavior of copolymers of N-isopropylacrylamide and N, N-dimethylacrylamide in dilute aqueous solution. Macromolecules 36:7765–7770

    Article  Google Scholar 

  30. Satoh T, Sumaru K, Takagi T, Takai K, Kanamori T (2011) Isomerization of spirobenzopyrans bearing electron-donating and electron-withdrawing groups in acidic aqueous solutions. Phys Chem Chem Phys 13:7322–7329

    Article  Google Scholar 

  31. Ziolkowski B, Florea L, Theobald J, Benito-Lopez F, Diamond D (2013) Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators. Soft Matter 9:8754–8760

    Article  Google Scholar 

  32. Wu XS, Hoffman AS, Yager P (1992) Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J Polym Sci A Polym Chem 30:2121–2129

    Article  Google Scholar 

  33. Sayil C, Okay O (2001) Macroporous poly(N-isopropyl)acrylamide networks: formation conditions. Polymer 42:7639–7652

    Article  Google Scholar 

  34. Zhang J-T, Cheng S-X, Huang S-W, Zhuo R-X (2003) Temperature-sensitive poly(N-isopropylacrylamide) hydrogels with macroporous structure and fast response rate. Macromol Rapid Commun 24:447–451

    Article  Google Scholar 

  35. Zhang X-Z, Yang Y-Y, Chung T-S, Ma K-X (2001) Preparation and characterization of fast response macroporous poly(N-isopropylacrylamide) hydrogels. Langmuir 17:6094–6099

    Article  Google Scholar 

  36. Gürdağ G, Öz GM (2009) A novel poly(N-isopropylacrylamide-co-N-hydroxymethyl acrylamide) gel: preparation in the absence/presence of a pore-forming agent and characterization. Polym Adv Techol 20:216–224

    Article  Google Scholar 

  37. Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian W, Li X (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys 14:13233–13238

    Article  Google Scholar 

  38. Li L, Du X, Deng J, Yang W (2011) Synthesis of optically active macroporous poly(N-isopropylacrylamide) hydrogels with helical poly(N-propargylamide) for chiral recognition of amino acids. React Funct Polym 71:972–979

    Article  Google Scholar 

  39. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  Google Scholar 

  40. Czugala M, O’Connell C, Blin C, Fischer P, Fraser KJ, Benito-Lopez F, Diamond D (2014) Swelling and shrinking behaviour of photoresponsive phosphonium-based ionogel microstructures. Sens Actuator B Chem 194:105–113

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from EU Framework 7 project “ATWARM” (Marie Curie ITN, No. 238273) and Science Foundation Ireland under the Insight initiative, Grant SFI/12/RC/2289. FBL acknowledges the Ramón y Cajal Programme (Ministerio de Economía y Competitividad), Spain and the European Union´s Seventh Framework Programme (FP7) for Research, Technological Development and Demonstration under Grant Agreement No. 604241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot Diamond.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2248 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziółkowski, B., Florea, L., Theobald, J. et al. Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics. J Mater Sci 51, 1392–1399 (2016). https://doi.org/10.1007/s10853-015-9458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9458-2

Keywords