Skip to main content
Log in

Growth mechanism of one dimensional tin nanostructures by electrodeposition

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

One-dimensional tin nanostructures are synthesized using a template-free facile electrodeposition process without the use of electrolyte additives or surfactants. The needles have an elongated pyramidal shape with a rhomboidal base, and exhibit quasi-dendritic morphologies. The growth of these nanostructures, termed “nanoneedles,” is substrate independent due to the formation of a tin film on the substrate surface prior to nucleation. Tin protrusions form preferentially as localized regions on the surface experience increased mass transport due to the transition from 2D linear to 3D spherical diffusion. Early in the growth, Joule heating melts the protrusion tip, and then spherical diffusion to the liquid tip drives the formation of the needles via self-catalyzed growth. This initial part of the process depends on a critical Nernst diffusion layer thickness (mass transport rate) and is controlled by the variation of solution agitation, tin concentration, temperature, and cathodic current density. Subsequently, deposition is rate limited by the kinetics of tin reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rinne CL, Hren JJ, Fedkiw PS (2002) Electrodeposition of tin needle-like structures. J Electrochem Soc 149(3):C150–C158. doi:10.1149/1.1445172

    Article  Google Scholar 

  2. Sharma DK, Ott A, O’Mullane AP, Bhargava SK (2011) The facile formation of silver dendritic structures in the absence of surfactants and their electrochemical and SERS properties. Colloid Surf A 386(1–3):98–106. doi:10.1016/j.colsurfa.2011.07.001

    Article  Google Scholar 

  3. Nikolić ND, Popov KI, Pavlović LJ, Pavlović MG (2006) Morphologies of copper deposits obtained by the electrodeposition at high overpotentials. Surf Coat Technol 201(3–4):560–566. doi:10.1016/j.surfcoat.2005.12.004

    Article  Google Scholar 

  4. Djenizian T, Hanzu I, Eyraud M, Santinacci L (2008) Electrochemical fabrication of tin nanowires: a short review. C R Chim 11(9):995–1003. doi:10.1016/j.crci.2008.05.003

    Article  Google Scholar 

  5. Ye W, Yan J, Ye Q, Zhou F (2010) Template-free and direct electrochemical deposition of hierarchical dendritic gold microstructures: growth and their multiple applications. J Phys Chem C 114(37):15617–15624. doi:10.1021/jp105929b

    Article  Google Scholar 

  6. Dattoli EN, Davydov AV, Benkstein KD (2012) Tin oxide nanowire sensor with integrated temperature and gate control for multi-gas recognition. Nanoscale 4(5):1760–1769. doi:10.1039/C2NR11885H

    Article  Google Scholar 

  7. Das K, Panda SK, Chaudhuri S (2008) Solvent-controlled synthesis of TiO2 1D nanostructures: growth mechanism and characterization. J Cryst Growth 310(16):3792–3799. doi:10.1016/j.jcrysgro.2008.05.039

    Article  Google Scholar 

  8. Liu JZ, Yan PX, Yue GH, Kong LB, Zhuo RF, Qu DM (2006) Synthesis of doped ZnS one-dimensional nanostructures via chemical vapor deposition. Mater Lett 60(29–30):3471–3476. doi:10.1016/j.matlet.2006.03.034

    Article  Google Scholar 

  9. Manekkathodi A, Lu M-Y, Wang CW, Chen L-J (2010) Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv Mater 22(36):4059–4063. doi:10.1002/adma.201001289

    Article  Google Scholar 

  10. Zhu YW, Yu T, Cheong FC, Xu XJ, Lim CT, Tan VBC, Thong JTL, Sow CH (2005) Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films. Nanotechnol 16(1):88

    Article  Google Scholar 

  11. Liao L, Zheng Z, Yan B, Zhang JX, Gong H, Li JC, Liu C, Shen ZX, Yu T (2008) Morphology controllable synthesis of α-Fe2O3 1D nanostructures: growth mechanism and nanodevice based on single nanowire. J Phys Chem C 112(29):10784–10788. doi:10.1021/jp802968a

    Article  Google Scholar 

  12. Pan A, Wang X, He P, Zhang Q, Wan Q, Zacharias M, Zhu X, Zou B (2007) Color-changeable optical transport through Se-doped CdS 1D nanostructures. Nano Lett 7(10):2970–2975. doi:10.1021/nl0710295

    Article  Google Scholar 

  13. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3(1):31–35. doi:10.1038/nnano.2007.411

    Article  Google Scholar 

  14. Choi JW, Hu L, Cui L, McDonough JR, Cui Y (2010) Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J Power Sources 195(24):8311–8316. doi:10.1016/j.jpowsour.2010.06.108

    Article  Google Scholar 

  15. Chan CK, Zhang XF, Cui Y (2007) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8(1):307–309. doi:10.1021/nl0727157

    Article  Google Scholar 

  16. Ying Z, Wan Q, Song ZT, Feng SL (2004) SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 15(11):1682

    Article  Google Scholar 

  17. Adachi MM, Anantram MP, Karim KS (2013) Core-shell silicon nanowire solar cells. Sci Rep. doi:10.1038/srep01546

    Google Scholar 

  18. Zhang YX, Huang M, Li F, Wen ZQ (2013) Controlled synthesis of hierarchical CuO nanostructures for electrochemical capacitor electrodes. Int J Electrochem Sci 8:8645–8661

    Google Scholar 

  19. Mackay DT, Janish MT, Sahaym U, Kotula P, Jungjohann KL, Carter CB, Norton MG (2014) Template-free electrochemical synthesis of tin nanostructures. J Mater Sci 49(4):1476–1483. doi:10.1007/s10853-013-7917-1

    Article  Google Scholar 

  20. Janish MT, Mackay DT, Liu Y, Jungjohann KL, Carter CB, Norton MG (2015) TEM in situ lithiation of tin nanoneedles for battery applications. J Mater Sci 51

  21. Etacheri V, Seisenbaeva GA, Caruthers J, Daniel G, Nedelec J-M, Kessler VG, Pol VG (2014) Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage. Adv Energy Mater. doi:10.1002/aenm.201401289

    Google Scholar 

  22. Yang J, Wachtler M, Winter M, Besenhard JO (1999) Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries. Electrochem Solid-State Lett 2(4):161–163. doi:10.1149/1.1390769

    Article  Google Scholar 

  23. Nam D-H, Kim T-H, Hong K-S, Kwon H-S (2014) Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries. ACS Nano 8(11):11824–11835. doi:10.1021/nn505536t

    Article  Google Scholar 

  24. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F (2013) A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun 49(2):149–151. doi:10.1039/C2CC34673G

    Article  Google Scholar 

  25. Peraldo Bicelli L, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3(4):356–408

    Google Scholar 

  26. Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Springer Science & Business Media, Berlin

    Google Scholar 

  27. Barvinschi P (2006) Numerical simulation of ohmic heating in idealized thin-layer electrodeposition cells. J Optoelectron Adv Mater 8(1):271–279

    Google Scholar 

  28. Diggle JW, Despic AR, Bockris JOM (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116(11):1503–1514. doi:10.1149/1.2411588

    Article  Google Scholar 

  29. Popov KI, Krstajić NV (1983) The mechanism of spongy electrodeposits formation on inert substrate at low over potentials. J Appl Electrochem 13(6):775–782. doi:10.1007/BF00615827

    Article  Google Scholar 

  30. Saitou M, Oshikawa W, Makabe A (2002) Characterization of electrodeposited nickel film surfaces using atomic force microscopy. J Phys Chem Solids 63(9):1685–1689. doi:10.1016/S0022-3697(01)00254-2

    Article  Google Scholar 

  31. Saitou M, Makabe A, Tomoyose T (2000) Surface roughening in electrodeposited nickel films on ITO glasses at a low current density. Surf Sci 459(1–2):L462–L466. doi:10.1016/S0039-6028(00)00551-3

    Article  Google Scholar 

  32. Popov KI, Pavlović MG, Maksimović MD (1982) Comparison of the critical conditions for initiation of dendritic growth and powder formation in potentiostatic and galvanostatic copper electrodeposition. J Appl Electrochem 12(5):525–531. doi:10.1007/BF00614978

    Article  Google Scholar 

  33. Despić AR, Popov KI (1972) Transport-controlled deposition and dissolution of metals. In: Conway BE, Bockris JOM (eds) Modern aspects of electrochemistry, vol 7. Springer, New York, pp 199–313. doi:10.1007/978-1-4684-3003-5_4

    Google Scholar 

  34. Abyaneh MY (2006) Modelling diffusion controlled electrocrystallisation processes. J Electroanal Chem 586(2):196–203. doi:10.1016/j.jelechem.2005.10.004

    Article  Google Scholar 

  35. Barton JL, Bockris JOM (1962) The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond Ser A 268(1335):485–505. doi:10.2307/2414338

    Article  Google Scholar 

  36. Oren Y, Landau U (1982) Growth of zinc dendrites in acidic zinc chloride solutions. Electrochim Acta 27(6):739–748. doi:10.1016/0013-4686(82)85068-8

    Article  Google Scholar 

  37. Zhu J, Wang T, Chen Z, Xu J, Xie H, Xiao T, Li T (2012) Real time imaging on dendrite morphology evolution during alloy solidification under electric field. IOP Conf Ser Mater Sci Eng 33(1):012039

    Article  Google Scholar 

  38. Fukunaka Y, Yamamoto T, Kondo Y (1989) Ionic mass transfer associated with dendritic growth of electrodeposited silver in AgNO3 solution. J Electrochem Soc 136(12):3630–3633. doi:10.1149/1.2096522

    Article  Google Scholar 

  39. Yu Z, Yao Z, Zhang N, Wang Z, Li C, Han X, Wu X, Jiang Z (2013) Electric field-induced synthesis of dendritic nanostructured α-Fe for electromagnetic absorption application. J Mater Chem A 1(14):4571–4576. doi:10.1039/c3ta01641b

    Article  Google Scholar 

  40. Akolkar R (2013) Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources 232:23–28. doi:10.1016/j.jpowsour.2013.01.014

    Article  Google Scholar 

  41. Sun M, Liao H-G, Niu K, Zheng H (2013) Structural and morphological evolution of lead dendrites during electrochemical migration. Sci Rep. doi:10.1038/srep03227

    Google Scholar 

  42. Sawada Y, Dougherty A, Gollub JP (1986) Dendritic and fractal patterns in electrolytic metal deposits. Phys Rev Lett 56(12):1260–1263

    Article  Google Scholar 

  43. Pavlović MG, Kindlová Š, Roušar I (1992) The initiation of dendritic growth of electrodeposited copper on a rotating disc electrode with changing copper concentration and diffusion layer thickness. Electrochim Acta 37(1):23–27. doi:10.1016/0013-4686(92)80006-8

    Article  Google Scholar 

  44. Sahaym U, Miller SL, Norton MG (2010) Effect of plating temperature on Sn surface morphology. Mater Lett 64(14):1547–1550. doi:10.1016/j.matlet.2010.04.036

    Article  Google Scholar 

Download references

Acknowledgements

The electron microscope images were recorded at the Franceschi Microscopy and Imaging Center at Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Owen.

Ethics declarations

Conflicts of interest

The authors note no conflicts of interest regarding the present work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Owen, C.D., Grant Norton, M. Growth mechanism of one dimensional tin nanostructures by electrodeposition. J Mater Sci 51, 577–588 (2016). https://doi.org/10.1007/s10853-015-9323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9323-3

Keywords

Navigation