Skip to main content
Log in

The thiophene derivative with ferricyanide end group and its polymers: synthesis and electrochromic performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel thiophene derivative (Fe–Th) with ferricyanide end group is successfully synthesized. The polythiophene derivative (Fe–PTh) is additionally obtained in aqueous solution by polymerization of Fe–Th, and shows a nanoparticle structure with a diameter from 10 to 100 nm. A simple solid-state electrochromic device is fabricated using the Fe–PTh as electrochromic material, and displays a novel three-color electrochromism from blue, green, and red with the increased potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ohmori Y, Uchida M, Muro K, Yoshino K (1991) Effects of alkyl chain-length and carrier confinement layer on characteristics of poly(3-alkylthiophene) electroluminescent diodes. Solid State Commun 80(8):605–608

    Article  Google Scholar 

  2. Garnier F, Tourillon G, Gazard M, Dubois JC (1983) Organic conducting polymers derived from substituted thiophenes as electrochromic material. J Electroanal Chem 148(2):299–303. doi:10.1016/s0022-0728(83)80406-9

    Article  Google Scholar 

  3. Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-valence hexacyanides.1. voltammetric and spectral studies of the oxidation and reduction of thin-films of prussian blue. J Phys Chem 85(9):1225–1231. doi:10.1021/j150609a026

    Article  Google Scholar 

  4. Shankaran DR, Narayanan SS (2002) Amperometric sensor for thiosulphate based on cobalt hexacyanoferrate modified electrode. Sens Actuators B-Chem 86(2–3):180–184

    Article  Google Scholar 

  5. Neff VD (1985) Some performance-characteristics of a Prussian blue battery. J Electrochem Soc 132(6):1382–1384. doi:10.1149/1.2114121

    Article  Google Scholar 

  6. Lin MS, Shih WC (1999) Chromium hexacyanoferrate based glucose biosensor. Anal Chim Acta 381(2–3):183–189. doi:10.1016/s0003-2670(98)00745-4

    Article  Google Scholar 

  7. Radoi A, Compagnone D, Devic E, Palleschi G (2007) Low potential detection of NADH with Prussian blue bulk modified screen-printed electrodes and recombinant NADH oxidase from Thermus thermophilus. Sens Actuators B 121(2):501–506. doi:10.1016/j.snb.2006.04.075

    Article  Google Scholar 

  8. Castro SSL, Balbo VR, Barbeira PJS, Stradiotto NR (2001) Flow injection amperometric detection of ascorbic acid using a Prussian blue film-modified electrode. Talanta 55(2):249–254. doi:10.1016/s0039-9140(01)00407-6

    Article  Google Scholar 

  9. Lin C-L, Liao L-C (2014) Preparation and characterization of micropatterned prussian blue thin films with enhanced electrochromic properties. Surf Coat Technol 259:330–334. doi:10.1016/j.surfcoat.2014.02.058

    Article  Google Scholar 

  10. Chen W-K, Hu C-W, Hsu C-Y, Ho K-C (2009) A study on the electrochromic properties of polyaniline/silica composite films with an enhanced optical contrast. Electrochim Acta 54(18):4408–4415. doi:10.1016/j.electacta.2009.03.017

    Article  Google Scholar 

  11. Zhu YB, Wolf MO (2000) Charge transfer and delocalization in conjugated (ferrocenylethynyl)oligothiophene complexes. J Am Chem Soc 122(41):10121–10125. doi:10.1021/ja0008564

    Article  Google Scholar 

  12. Xia XH, Tu JP, Zhang J, Huang XH, Wang XL, Zhang WK, Huang H (2009) Multicolor and fast electrochromism of nanoporous NiO/poly(3,4-ethylenedioxythiophene) composite thin film. Electrochem Commun 11(3):702–705. doi:10.1016/j.elecom.2009.01.017

    Article  Google Scholar 

  13. Gadgil B, Damlin P, Heinonen M, Kvarnström C (2015) A facile one step electrostatically driven electrocodeposition of polyviologen–reduced graphene oxide nanocomposite films for enhanced electrochromic performance. Carbon 89:53–62. doi:10.1016/j.carbon.2015.03.020

    Article  Google Scholar 

  14. Lee JS, Choi Y-J, Park H-H, Chul Pyun J (2011) Electrochromic properties of poly(3,4-ethylenedioxythiophene) nanocomposite film containing SiO2 nanoparticles. J Appl Polym Sci 122(5):3080–3085. doi:10.1002/app.34130

    Article  Google Scholar 

  15. Guadagnini L, Salatelli E, Kharina A, Tonelli D (2014) Electrochemically deposited thiophene-based polymers as protective agents for Prussian Blue thin films. J Solid State Electrochem 18(10):2731–2742. doi:10.1007/s10008-014-2530-z

    Article  Google Scholar 

  16. Thakur B, Sawant SN (2013) Polyaniline/Prussian-blue-based amperometric biosensor for detection of uric acid. ChemPlusChem 78(2):166–174. doi:10.1002/cplu.201200222

    Article  Google Scholar 

  17. Lupu S, Mihailciuc C, Pigani L, Seeber R, Totir N, Zanardi C (2002) Electrochemical preparation and characterisation of bilayer films composed by Prussian Blue and conducting polymer. Electrochem Commun 4(10):753–758. doi:10.1016/s1388-2481(02)00440-x

    Article  Google Scholar 

  18. Noel V, Randriamahazaka H, Chevrot C (2000) Composite films of iron(III) hexacyanoferrate and poly(3,4-ethylenedioxythiophene): electrosynthesis and properties. J Electroanal Chem 489(1–2):46–54. doi:10.1016/s0022-0728(00)00195-9

    Article  Google Scholar 

  19. Lisowskaoleksiak A (2008) Impedance spectroscopy studies on hybrid materials consisting of poly(3,4-ethylenedioxythiophene) and iron, cobalt and nickel hexacyanoferrate. Solid State Ionics 179(1–6):72–78. doi:10.1016/j.ssi.2007.12.032

    Article  Google Scholar 

  20. Deepa M, Awadhia A, Bhandari S, Agrawal SL (2008) Electrochromic performance of a poly(3,4-ethylenedioxythiophene)-Prussian blue device encompassing a free standing proton electrolyte film. Electrochim Acta 53(24):7266–7275. doi:10.1016/j.electacta.2008.04.020

    Article  Google Scholar 

  21. Deepa M, Awadhia A, Bhandari S (2009) Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film. Phys Chem Chem Phys 11(27):5674–5685. doi:10.1039/b900091g

    Article  Google Scholar 

  22. Chen K-C, Hsu C-Y, Hu C-W, Ho K-C (2011) A complementary electrochromic device based on Prussian blue and poly(ProDOT-Et2) with high contrast and high coloration efficiency. Sol Energy Mater Sol Cells 95(8):2238–2245. doi:10.1016/j.solmat.2011.03.029

    Article  Google Scholar 

  23. Somani P, Mandale AB, Radhakrishnan S (2000) Study and development of conducting polymer-based electrochromic display devices. Acta Mater 48(11):2859–2871. doi:10.1016/s1359-6454(00)00098-7

    Article  Google Scholar 

  24. DeLongchamp DM, Hammond PT (2004) Multiple-color electrochromism from layer-by-layer-assembled polyaniline/Prussian Blue nanocomposite thin films. Chem Mater 16(23):4799–4805. doi:10.1021/cm0496624

    Article  Google Scholar 

  25. Liang G, Xu J, Wang X (2009) Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian Blue using miniemulsion periphery polymerization (MEPP). J Am Chem Soc 131(15):5378–5379. doi:10.1021/ja900516a

    Article  Google Scholar 

  26. Tung TS, Ho KC (2006) Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4ethylenedioxythiophene) and Prussian blue. Sol Energy Mater Sol Cells 90(4):521–537. doi:10.1016/j.solmat.2005.02.018

    Article  Google Scholar 

  27. Geetha S, Trivedi DC (2005) A new route to synthesize high degree polythiophene in a room temperature melt medium. Synth Metals 155(1):232–239. doi:10.1016/j.synthmet.2005.08.003

    Article  Google Scholar 

  28. Robin MB (1962) Color and electronic configurations of prussian blue. Inorg Chem 1(2):337–342. doi:10.1021/ic50002a028

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Nos. 21174059, 21374046), Program for Changjiang Scholars and Innovative Research Team in University, Open Project of State Key Laboratory of Supramolecular Structure and Materials (SKLSSM2015015), and the Testing Foundation of Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yan, H. & Lu, Y. The thiophene derivative with ferricyanide end group and its polymers: synthesis and electrochromic performance. J Mater Sci 50, 6920–6925 (2015). https://doi.org/10.1007/s10853-015-9242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9242-3

Keywords

Navigation