Skip to main content
Log in

Surface tension and density of RENE N5® and RENE 90® Ni-based superalloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The surface tension and density of Ni-based superalloys RENE N5® and RENE 90® have been measured by the pinned drop method at temperatures ranging from 1638 to 1780 K. In order to obtain accurate reliable data, the tests have been performed under a reducing atmosphere to minimize the oxygen contamination. In the temperature ranges investigated, both properties show a linear temperature dependence. With the aim of evaluating the reliability of the data, the present results have been analyzed using different thermodynamic models. The new experimental data for RENE N5® and RENE 90® superalloys were also compared with the corresponding data obtained by different experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rappaz M, Rettenmayr M (1998) Simulation of solidification. Curr Opin Solid State Mater Sci 3:275–282

    Article  Google Scholar 

  2. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J Propuls Power 22(2):361–374

    Article  Google Scholar 

  3. Van Sluytman JS, Pollock TM (2012) Optimal precipitate shapes in nickel-base γ − γ′ alloys. Acta Mater 60:1771–1783

    Article  Google Scholar 

  4. Reed RC, Tao T, Warnken N (2009) Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater 57:5898–5913

    Article  Google Scholar 

  5. Warnken N, Mab D, Drevermann A, Reed RC, Fries SG, Steinbach I (2009) Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys. Acta Mater 57:5862–5875

    Article  Google Scholar 

  6. Mukai K, Li Z, Mills KC (2005) Prediction of the densities of liquid Ni-based superalloys. Metall Mater Trans 36B:255–262

    Article  Google Scholar 

  7. Mills KC, Youssef YM, Li Z, Su Y (2006) Calculation of thermophysical properties of Ni-based superalloys. ISIJ Int 46(5):623–632

    Article  Google Scholar 

  8. Brooks R, Egry I, Ricci E, Seetharaman S, Wunderlich R (2006) Thermophysical property measurements of high-temperature liquid metallic alloys–state of the art. High Temp Mater Process 25:303–322

    Article  Google Scholar 

  9. Egry I, Ricci E, Novakovic R, Ozawa S (2010) Surface tension of liquid metals and alloys—recent developments. Adv Colloid Interface Sci 159:198–212

    Article  Google Scholar 

  10. Keene BJ (1993) Review of data for the surface tension of pure metals. Int Mater Rev 38:157–192

    Article  Google Scholar 

  11. Mills KC, Su YC (2006) Review of surface tension data for metallic elements and alloys: part 1—pure metals. Int Mater Rev 51:329–351

    Article  Google Scholar 

  12. Keene BJ (1993) The surface tension of tin and its alloys with particular reference to solders. National Physical Laboratory, Teddington

    Google Scholar 

  13. Nowak R, Lanata T, Sobczak N, Ricci E, Giuranno D, Novakovic R, Holland-Moritz D, Egry I (2010) Surface tension of γ-TiAl-based alloys. J Mater Sci 45:1993–2001. doi:10.1007/s10853-009-4061-z

    Article  Google Scholar 

  14. Sikka VK, Deevi SC, Viswanathan S, Swindeman RW, Santella ML (2000) Advances in processing of Ni3Al-based intermetallics and applications. Intermetallics 8:1329–1337

    Article  Google Scholar 

  15. Fecht HJ, Wunderlich R, Battezzati L, Egry I, Étay J, Ricci E, Seetharaman S (2008) Thermophysical properties of liquid metallic alloys. Final Report Phase II Thermolab ESA-MAP Project AO-99-022

  16. Naidich JuV (1981) The wettability of solids by liquid metals. In: Cadenhead DA, Danielli JF (eds) Progress in surface and membrane science. Academic Press, New York, pp 353–484

    Google Scholar 

  17. Ricci E, Arato E, Passerone A, Costa P (2005) Oxygen tensioactivity on liquid-metal drops. Adv Colloid Interface Sci 117:15–32

    Article  Google Scholar 

  18. Ricci E, Giuranno D, Novakovic R, Matsushita T, Seetharaman S, Brooks R, Chapman L, Quested P (2007) Density, surface tension, and viscosity of CMSX-4® superalloy. Int J Thermophys 28:1304–1321

    Article  Google Scholar 

  19. Giuranno D, Tuissi A, Novakovic R, Ricci E (2010) Surface tension and density of Al-Ni Alloys. J Chem Eng Data 55:3024–3028

    Article  Google Scholar 

  20. Battezzati L, Baldissin D (2008) The ThermoLab Project: thermophysical properties of superalloys. High Temp Mater Process 27(6):423–428

    Article  Google Scholar 

  21. Maze C, Burnet G (1971) Modifications of a non-linear regression technique used to calculate surface tension from sessile drops. Surf Sci 24:335–342

    Article  Google Scholar 

  22. Wu RI, Perepezko JH (2000) Liquidus temperature determination in multicomponent alloys by thermal analysis. Metall Mater Trans 31A:497–501

    Article  Google Scholar 

  23. Campbell CE, Boettinger WJ, Hansen T, Merewether P, Mueller BA (2005) Examination of multicomponent diffusion between two Ni-base superalloys. In: Turchi PEA, Gonis A, Rajan K, Meike A (eds) Complex inorganic solids: structural, stability, and magnetic properties of alloys, Springer, New York, pp. 241–250

    Google Scholar 

  24. Barabash OM, Barabash RI, David SA, Ice GE (2006) Residual stresses, thermomechanical behavior and interfaces in the weld joint. Adv Eng Mater 8(3):202–205

    Article  Google Scholar 

  25. Li Z, Mills KC, McLean M, Mukai K (2005) Measurement of the density and surface tension of Ni-based superalloys in the liquid and mushy states. Metall Mater Trans 36B:247–254

    Article  Google Scholar 

  26. Ansara I, Dupin N, Lukas HL, Sundman B (1997) Thermodynamic assessment of the Al-Ni system. J Alloys Compd 247:20–30

    Article  Google Scholar 

  27. Dupin N, Ansara I, Sundman B (2001) Thermodynamic re-assessment of the ternary system Al-Cr-Ni. Calphad 25(2):279–298

    Article  Google Scholar 

  28. Iida T, Guthrie RIL (1993) The physical properties of liquid metals, 1st edn. Clarendon Press, Oxford

    Google Scholar 

  29. Lang G, Laty P, Joud JC, Desré P (1977) Measurement of the surface tension of some fluid metals by different methods. Z Metallkd 68:113–116

    Google Scholar 

  30. Levin ES, Ayushina GD (1971) Russ J Phys Chem 45(6):792–795

    Google Scholar 

  31. Naidich YuV, Perevertailo VM, Nevodnik GM (1972) Surface properties of Ni–C and Co–C melts. Izv Russ Akad Nauk Ser Metal 2:22–30

    Google Scholar 

  32. Novakovic R (2011) Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys. J Phys 23(1–8):235107

    Google Scholar 

  33. Novakovic R, Tanaka T (2006) Bulk and surface properties of Al-Co and Co-Ni liquid alloys. Phys B 371:223–231

    Article  Google Scholar 

  34. Plevachuk Y, Sklyarchuk V, Gerbeth G, Eckert S, Novakovic R (2011) Surface tension and density of liquid Bi-Pb, Bi-Sn and Bi-Pb-Sn eutectic alloys. Surf Sci 605:1034–1042

    Article  Google Scholar 

  35. Mukai K, Li Z, Fang L (2004) Measurement of the densities of nickel-based ternary, quaternary and commercial alloys. Mater Trans 45(10):2987–2993

    Article  Google Scholar 

  36. Mills KC, Youssef YM, Li Z (2006) The effect of aluminium content on thermophysical properties of Ni-based superalloys. ISIJ Int 46(1):50–57

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the ESA MAP-Thermolab Project for financial support and Thermolab team for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rada Novakovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuranno, D., Amore, S., Novakovic, R. et al. Surface tension and density of RENE N5® and RENE 90® Ni-based superalloys. J Mater Sci 50, 3763–3771 (2015). https://doi.org/10.1007/s10853-015-8941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8941-0

Keywords

Navigation