Skip to main content
Log in

Hydrophilic poly-ether side-chained benzodithiophene-based homopolymer for solar cells and field-effect transistors

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two benzodithiophene (BDT)-based homopolymers which have different mole ratios of poly-ether side chain substitute were synthesized by Stille coupling reaction. The polymers show decomposition temperature (T d) around 317 °C and optical band gap around 2.2 eV. Solar cell devices with bulk heterojunction structure and field-effect transistors devices were fabricated to evaluate the photovoltaic properties of resultant polymers. Solar cell devices based on the polymer with 100 % poly-ether side chain (P1) show low power conversion efficiencies (PCEs) of 0.71 % resulting from the poor morphology of active layer which has rough surface and fairly large domain size due to the high aggregation tendency of P1:PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) blend thin film as active layer in the structure of devices. Polymer with alternating poly-ether and alkoxy chained BDT (P2) and PCBM blend film shows smooth surface and appropriate domain size, which help to enhance the hole transportation and photovoltaic performances. The PCEs of the devices based on P2 reached 2.00 % which is a decent result for BDT-based homopolymer donor with relatively large band gap (ca. 2.2 eV). These two polymers exhibited mobilities of 3.95 × 10−4 and 6.18 × 10−4 cm2/Vs in field-effect transistors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1790

    Article  Google Scholar 

  2. Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292

    Article  Google Scholar 

  3. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  Google Scholar 

  4. Thompson BC, Fréchet JM (2008) Polymer-fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  Google Scholar 

  5. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  Google Scholar 

  6. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338

    Article  Google Scholar 

  7. Wen SG, Bao XC, Shen WF, Gu CT, Du ZK, Han LL, Zhu DQ, Yang RQ (2014) Benzodithiophene-based poly(aryleneethynylene)s: synthesis, optical properties, and applications in organic solar cell. J Polym Sci, Part A: Polym Chem 52:208–215

    Article  Google Scholar 

  8. Liu Q, Bao XC, Wen SG, Du ZK, Han LL, Zhu DQ, Chen YH, Sun ML, Yang RQ (2014) Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. Polym Chem 5:2076–2082

    Article  Google Scholar 

  9. Sista P, Kularatne RS, Mulholland ME, Wilson M, Holmes N, Zhou XJ, Dastoor PC, Belcher W, Rasmussen SC, Biewer MC, Stefan MC (2013) Synthesis and photovoltaic performance of donor–acceptor polymers containing benzo[1,2-b:4,5-b′]dithiophene with thienyl substituents. J Polym Sci, Part A: Polym Chem 51:2622–2630

    Article  Google Scholar 

  10. Zhang B, Yu L, Fan L, Wang N, Hu LW, Yang W (2014) Indolo[3,2-b]carbazole and benzofurazan based narrow band-gap polymers for photovoltaic cells. New J Chem 38:4587–4593

    Article  Google Scholar 

  11. Tang WH, Hai JF, Shi GZ, Ma WL, Yu JS, Zhu EW, Bian LY (2014) Naphthodifuran alternating quinoxaline copolymers with a bandgap of 1.2 eV and their photovoltaic characterization. New J Chem 38:4816–4822

    Article  Google Scholar 

  12. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photon 6:593–597

    Article  Google Scholar 

  13. Szarko JM, Guo JC, Liang YY, Lee B, Rolczynski BS, Strzalka J, Xu T, Loser S, Marks TJ, Yu LP (2010) When function follows form: effects of donor copolymer side chains on film morphology and BHJ solar cell performance. Adv Mater 22:5468–5472

    Article  Google Scholar 

  14. Piliego C, Holcombe TW, Douglas JD, Woo CH, Beaujuge PM, Fréchet JM (2010) Synthetic control of structural order in N-alkylthieno [3,4-c] pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc 132:7595–7597

    Article  Google Scholar 

  15. Yang LY, Zhou HX, You W (2010) Quantitatively analyzing the influence of side chains on photovoltaic properties of polymer-fullerene solar cells. J Phys Chem C 114:16793–16800

    Article  Google Scholar 

  16. Zhou HX, Yang LY, Xiao SQ, Liu SB, You W (2009) Donor–acceptor polymers incorporating alkylated dithienylbenzothiadiazole for bulk heterojunction solar cells: pronounced effect of positioning alkyl chains. Macromolecules 43:811–820

    Article  Google Scholar 

  17. Svensson M, Zhang FL, Veenstra SC, Verhees WJ, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988–991

    Article  Google Scholar 

  18. Chen MH, Hou JH, Hong ZR, Yang GW, Sista S, Chen LM, Yang Y (2009) Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv Mater 21:4238–4242

    Article  Google Scholar 

  19. Nguyen LH, Hoppe H, Erb T, Guenes S, Gobsch G, Sariciftci NS (2007) Effects of annealing on the nanomorphology and performance of poly (alkylthiophene): fullerene bulk-heterojunction solar cells. Adv Funct Mater 17:1071–1078

    Article  Google Scholar 

  20. Gadisa A, Oosterbaan WD, Vandewal K, Bolsée JC, Bertho S, D’Haen J, Lutsen L, Vanderzande D, Manca JV (2009) Effect of alkyl side-chain length on photovoltaic properties of poly (3-alkylthiophene)/PCBM bulk heterojunctions. Adv Funct Mater 19:3300–3306

    Article  Google Scholar 

  21. Ko S, Verploegen E, Hong S, Mondal R, Hoke ET, Toney MF, McGehee MD, Bao ZN (2011) 3,4-Disubstituted polyalkylthiophenes for high-performance thin-film transistors and photovoltaics. J Am Chem Soc 133:16722–16725

    Article  Google Scholar 

  22. Xin H, Kim FS, Jenekhe SA (2008) Highly efficient solar cells based on poly (3-butylthiophene) nanowires. J Am Chem Soc 130:5424–5425

    Article  Google Scholar 

  23. Hou JH, Park MH, Zhang SQ, Yao Y, Chen LM, Li JH, Yang Y (2008) Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo [1,2-b:4,5-b′] dithiophene. Macromolecules 41:6012–6018

    Article  Google Scholar 

  24. Dou LT, Chang WH, Gao J, Chen CC, You JB, Yang Y (2012) A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv Mater 25:825–831

    Article  Google Scholar 

  25. Li XH, Choy WC, Huo LJ, Xie FX, Sha WE, Ding BF, Guo X, Li YF, Hou JH, You JB (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24:3046–3052

    Article  Google Scholar 

  26. Zhou HX, Yang LQ, Stuart AC, Price SC, Liu SB, You W (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew Chem Int Ed 123:3051–3054

    Article  Google Scholar 

  27. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH (2013) Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8%. Adv Mater 25:4944–4949

    Article  Google Scholar 

  28. Chen HC, Chen YH, Liu CC, Chien YC, Chou SW, Chou PT (2012) Prominent short-circuit currents of fluorinated quinoxaline-based copolymer solar cells with a power conversion efficiency of 8.0%. Chem Mater 24:4766–4772

    Article  Google Scholar 

  29. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138

    Article  Google Scholar 

  30. Wang XC, Jiang P, Chen Y, Luo H, Zhang ZG, Wang HQ, Li XY, Yu G, Li YF (2013) Thieno [3,2-b] thiophene-bridged D-π-A polymer semiconductor based on benzo [1,2-b:4,5-b′] dithiophene and benzoxadiazole. Macromolecules 46:4805–4812

    Article  Google Scholar 

  31. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH (2011) Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed 123:9871–9876

    Article  Google Scholar 

  32. Dong Y, Hu XW, Duan CH, Liu P, Liu SJ, Lan LY, Chen DC, Ying L, Su SJ, Gong X, Huang F, Cao Y (2013) A series of new medium-bandgap conjugated polymers based on naphtho [1,2-c:5,6-c] bis (2-octyl-[1,2,3] triazole) for high-performance polymer solar cells. Adv Mater 25:3683–3688

    Article  Google Scholar 

  33. Chang WH, Gao J, Dou LT, Chen CC, Liu YS, Yang Y (2013) Side-chain tunability via triple component random copolymerization for better photovoltaic polymers. Adv Energy Mater 4: DOI:.10.1002/aenm.201300864

  34. Yang YC, Wu RM, Wang X, Xu XP, Li ZJ, Li K, Peng Q (2014) Isoindigo fluorination to enhance photovoltaic performance of donor–acceptor conjugated copolymers. Chem Commun 50:439–441

    Article  Google Scholar 

  35. Li WW, Furlan A, Roelofs WC, Hendriks KH, van Pruissen GW, Wienk MM, Janssen RA (2014) Wide band gap diketopyrrolopyrrole-based conjugated polymers incorporating biphenyl units applied in polymer solar cells. Chem Commun 50:679–681

    Article  Google Scholar 

  36. Cabanetos C, El Labban A, Bartelt JA, Douglas JD, Mateker WR, Fréchet JM, McGehee MD, Beaujuge PM (2013) Linear side chains in benzo [1,2-b:4,5-b′] dithiophene-thieno [3,4-c] pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc 135:4656–4659

    Article  Google Scholar 

  37. Lee D, Hubijar E, Kalaw GJD, Ferraris JP (2012) Enhanced and tunable open-circuit voltage using dialkylthio benzo [1,2-b:4,5-b′] dithiophene in polymer solar cells. Chem Mater 24:2534–2540

    Article  Google Scholar 

  38. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) Processing additives for improved efficiency from bulk heterojunction solar cells. J Am Chem Soc 130:3619–3623

    Article  Google Scholar 

  39. Peet J, Kim J, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Article  Google Scholar 

  40. Lu K, Fang J, Zhu XW, Yan H, Li DH, Yang YL, Wei ZX (2013) A facile strategy to enhance the fill factor of ternary blend solar cells by increasing charge carrier mobility. New J Chem 37:1728–1735

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the National Natural Science Foundation of China (Project Nos. 21274134, 51173199, 61107090), New Century Excellent Talents in University (NCET-11-0473), Shandong Provincial Natural Science Foundation (ZR2011BZ007), Qingdao Municipal Science and Technology Program (11-2-4-22-hz, 13-1-4-200-jch) and Shenzhen Municipal Science and Technology Program (JCYJ20130401145617279) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingliang Sun or Renqiang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Bao, X., Yan, Y. et al. Hydrophilic poly-ether side-chained benzodithiophene-based homopolymer for solar cells and field-effect transistors. J Mater Sci 50, 2263–2271 (2015). https://doi.org/10.1007/s10853-014-8789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8789-8

Keywords

Navigation