Skip to main content
Log in

Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(lactic acid)/poly(trimethylene carbonate) (PLA/PTMC) films incorporated with cinnamaldehyde (0, 3, 6, 9, and 12 wt%) were prepared by solvent casting and characterized by physical, mechanical, and antimicrobial properties. SEM analysis revealed that the surface of film became rougher with certain porosity when cinnamaldehyde was incorporated into the PLA/PTMC blends. Cinnamaldehyde acted as plasticizers which reduce the intermolecular forces of polymer chains, thus improving the flexibility and extensibility of the films. Differential scanning calorimetry showed that the crystallinity of PLA phase decreased by the presence of cinnamaldehyde in the composite films. Water vapor permeability of films increased with the increase of cinnamaldehyde loading. However, the active PLA/PTMC/cinnamaldehyde composite films showed adequate barrier properties for food packaging application. Incorporation of cinnamaldehyde to the PLA/PTMC polymer matrix improved the antimicrobial activity of active packaging films. These results indicated that the best compromise between mechanical, barrier, thermal, and antimicrobial properties could be achieved by the addition of 9 wt% cinnamaldehyde into PLA/PTMC blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Courgneau C, Domenek S, Guinault A, Avérous L, Ducruet V (2011) Analysis of the structure–properties relationships of different multiphase systems based on plasticized poly (lactic acid). J Polym Environ 19:362–371

    Article  Google Scholar 

  2. Persico P, Ambrogi V, Carfagna C, Cerruti P, Ferrocino I, Mauriello G (2009) Nanocomposite polymer films containing carvacrol for antimicrobial active packaging. Polym Eng Sci 49:1447–1455

    Article  Google Scholar 

  3. Intawiwat N, Myhre E, Øysæd H, Jamtvedt SH, Pettersen MK (2012) Packaging materials with tailor made light transmission properties for food protection. Polym Eng Sci 52:2015–2024

    Article  Google Scholar 

  4. Ambrosio-Martín J, Fabra MJ, Lopez-Rubio A, Lagaron JM (2014) An effect of lactic acid oligomers on the barrier properties of polylactide. J Mater Sci 49(8):2975–2986. doi:10.1007/s10853-013-7929-x

    Article  Google Scholar 

  5. Hossain KMZ, Ahmed I, Parsons AJ, Scotchford CA, Walker GS, Thielemans W, Rudd CD (2012) Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly (lactic acid). J Mater Sci 47(6):2675–2686. doi:10.1007/s10853-011-6093-4

    Article  Google Scholar 

  6. Ljungberg N, Wesslén B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688

    Article  Google Scholar 

  7. Burgos N, Martino VP, Jiménez A (2013) Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98:651–658

    Article  Google Scholar 

  8. Jamshidian M, Arab Tehrany E, Cleymand F, Leconte S, Falher T, Desobry S (2012) Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohydr Polym 87:1763–1773

    Article  Google Scholar 

  9. Marras SI, Zuburtikudis I, Panayiotou C (2010) Solution casting versus melt compounding: effect of fabrication route on the structure and thermal behavior of poly (l-lactic acid) clay nanocomposites. J Mater Sci 45(23):6474–6480. doi:10.1007/s10853-010-4735-6

    Article  Google Scholar 

  10. Ljungberg N, Wesslén B (2005) Preparation and properties of plasticized poly (lactic acid) films. Biomacromolecules 6:1789–1796

    Article  Google Scholar 

  11. Rhim JW (2013) Effect of PLA lamination on performance characteristics of agar/κ-carrageenan/clay bio-nanocomposite film. Food Res Int 51:714–722

    Article  Google Scholar 

  12. Jain S, Reddy MM, Mohanty AK, Misra M, Ghosh AK (2010) A new biodegradable flexible composite sheet from poly (lactic acid)/poly (ε-caprolactone) blends and micro-talc. Macromol Mater Eng 295:750–762

    Article  Google Scholar 

  13. Arrieta MP, López J, Ferrándiz S, Peltzer MA (2013) Characterization of PLA-limonene blends for food packaging applications. Polym Test 32:760–768

    Article  Google Scholar 

  14. Qin Y, Yuan M, Li L, Guo S, Yuan M, Li W, Xue J (2006) Use of polylactic acid/polytrimethylene carbonate blends membrane to prevent postoperative adhesions. J Biomed Mater Res B 79:312–319

    Article  Google Scholar 

  15. Qin Y, Yang J, Yuan M, Xue J, Chao J, Wu Y, Yuan M (2014) Mechanical, barrier, and thermal properties of poly(lactic acid)/poly(trimethylene carbonate)/talc composite films. J Appl Polym Sci 131:40016.1–40016.7

    Google Scholar 

  16. Hill LE, Taylor TM, Gomes C (2013) Antimicrobial efficacy of poly (dl-lactide-co-glycolide) (PLGA) nanoparticles with entrapped cinnamon bark extract against Listeria monocytogenes and Salmonella typhimurium. J Food Sci 78:626–632

    Article  Google Scholar 

  17. Hosseini MH, Razavi SH, Mousavi MA (2009) Antimicrobial, physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. J Food Process Preserv 33:727–743

    Article  Google Scholar 

  18. Balaguer MP, Lopez-Carballo G, Catala R, Gavara R, Hernandez-Munoz P (2013) Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Int J Food Microbiol 166:369–377

    Article  Google Scholar 

  19. Chinma CE, Ariahu CC, Alakali JS (2013) Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. J Food Sci Technol. doi:10.1007/s13197-013-1227-0

  20. Raouche S, Mauricio-Iglesias M, Peyron S, Guillard V, Gontard N (2011) Combined effect of high pressure treatment and anti-microbial bio-sourced materials on microorganisms’ growth in model food during storage. Innov Food Sci Emerg Technol 12:426–434

    Article  Google Scholar 

  21. Sanla-Ead N, Jangchud A, Chonhenchob V, Suppakul P (2012) Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose-based packaging Films. Packag Technol Sci 25:7–17

    Article  Google Scholar 

  22. Ye H, Shen S, Xu J, Lin S, Yuan Y, Jones GS (2013) Synergistic interactions of cinnamaldehyde in combination with carvacrol against food-borne bacteria. Food Control 34:619–623

    Article  Google Scholar 

  23. Nostro A, Scaffaro R, D’Arrigo M, Botta L, Filocamo A, Marino A, Bisignano G (2012) Study on carvacrol and cinnamaldehyde polymeric films: mechanical properties, release kinetics and antibacterial and antibiofilm activities. Appl Microbiol Biotechnol 96:1029–1038

    Article  Google Scholar 

  24. Ouattara B, Simard RE, Piette G, Bégin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int J Food Microbiol 62:139–148

    Article  Google Scholar 

  25. Ravishankar S, Jaroni D, Zhu L, Olsen C, McHugh T, Friedman M (2012) Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde. J Food Sci 77:M377–M382

    Article  Google Scholar 

  26. Kechichian V, Ditchfield C, Veiga-Santos P, Tadini CC (2010) Natural antimicrobial ingredients incorporated in biodegradable films based on cassava starch. LWT-Food Sci Technol 43:1088–1094

    Article  Google Scholar 

  27. Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42:762–769

    Article  Google Scholar 

  28. Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll 27:220–227

    Article  Google Scholar 

  29. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24:770–775

    Article  Google Scholar 

  30. Liu L, Jin TZ, Coffin DR, Hicks KB (2009) Preparation of antimicrobial membranes: coextrusion of poly (lactic acid) and Nisaplin in the presence of Plasticizers. J Agric Food Chem 57:8392–8398

    Article  Google Scholar 

  31. Rhim JW, Mohanty AK, Singh SP, Ng PK (2006) Effect of the processing methods on the performance of polylactide films: thermocompression versus solvent casting. J Appl Polym Sci 101:3736–3742

    Article  Google Scholar 

  32. Erdohan ZÖ, Çam B, Turhan KN (2013) Characterization of antimicrobial polylactic acid based films. J Food Eng 119:308–315

    Article  Google Scholar 

  33. Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  Google Scholar 

  34. Ramos M, Jiménez A, Peltzer M, Garrigós MC (2012) Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J Food Eng 109:513–519

    Article  Google Scholar 

  35. Sothornvit R, Krochta JM (2000) Oxygen permeability and mechanical properties of films from hydrolyzed whey protein. J Agric Food Chem 48:3913–3916

    Article  Google Scholar 

  36. Guillaume C, Schwab I, Gastaldi E, Gontard N (2010) Biobased packaging for improving preservation of fresh common mushrooms (Agaricus bisporus L.). Innov Food Sci Emerg Technol 11(4):690–696

    Article  Google Scholar 

  37. Roy S, Anantheswaran RC, Beelman RB (1996) Modified atmosphere and modified humidity packaging of fresh mushrooms. J Food Sci 61:391–397

    Article  Google Scholar 

  38. Hwang SW, Shim JK, Selke SE, Soto-Valdez H, Matuana L, Rubino M, Auras R (2012) Poly (l-lactic acid) with added α-tocopherol and resveratrol: optical, physical, thermal and mechanical properties. Polym Int 61:418–425

    Article  Google Scholar 

  39. Introzzi L, Fuentes-Alventosa JM, Cozzolino CA, Trabattoni S, Tavazzi S, Bianchi CL, Farris S (2012) “Wetting enhancer” pullulan coating for antifog packaging applications. ACS Appl Mater Interfaces 4:3692–3700

    Article  Google Scholar 

  40. Zodrow KR, Schiffman JD, Elimelech M (2012) Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation. Langmuir 28:13993–13999

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31160198) and (31360417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyue Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Yang, J. & Xue, J. Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde. J Mater Sci 50, 1150–1158 (2015). https://doi.org/10.1007/s10853-014-8671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8671-8

Keywords

Navigation