Skip to main content
Log in

Composition dependence of some thermo-physical properties of multi-component Se78−x Te20Sn2Bi x (0 ≤ x ≤ 6) chalcogenide glasses

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New multi-component glassy materials with composition of Se78−x Te20Sn2Bi x (0 ≤ x ≤ 6) have been synthesized by well-known melt quenching technique. The as-prepared glasses have been characterized by applying an advanced transient plane source technique to study their thermal transport properties (effective thermal conductivity, diffusivity, specific heat per unit volume) at room temperature. Density measurements have been done to correlate the obtained results. Using the experimental data of density measurements, the basic physical parameters, such as mean atomic volume, compactness, average coordination number etc., are evaluated for the synthesized glasses and the results are discussed as a function of glass composition. We have also determined the phonon mean free path (τ) using the experimental value of effective thermal diffusivity. The composition dependence of the thermal transport properties of aforesaid glassy system has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824

    Article  Google Scholar 

  2. Satoh I, Yamada N (2001) DVD-RAM for all audio/ vedio, PC, and network applications. Proc SPIE 4085:283

    Article  Google Scholar 

  3. Borg HJ, van Schijndel M, Rijpers JCN, Lankhorst MHR, Zhou G, Dekker MJ, Ubbens IPD, Kuijper M (2001) Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn J Appl Phys Part 1(40):1592

    Article  Google Scholar 

  4. Oomachi N, Ashida S, Nakamura N, Yusu K, Ichihara K (2002) Recording characteristics of Ge doped eutectic SbTe phase change discs with various compositions and its potential for high density recording. Jpn J Appl Phys Part 1(41):1695

    Article  Google Scholar 

  5. Hellmig J, Mijiritskii AV, Borg HJ, Musialkova K, Vromans P (2003) Dual-layer Blu-ray disc based on fast-growth phase-change materials. Jpn J Appl Phys Part 1(42):848

    Article  Google Scholar 

  6. Seddon AB, Laine MJ (1997) Chalcogenide glasses for acousto-optic devices. II. As–Ge–Se systems. J Non Cryst Solids 213 & 214:168

    Article  Google Scholar 

  7. Abe K, Takebe H, Morinaga K (1997) Preparation and properties of Ge–Ga–S glasses for laser hosts. J Non Cryst Solids 212:143

    Article  Google Scholar 

  8. Simons DR, Faber AJ, De Waal H (1995) GeS x glass for Pr3+-doped fiber amplifiers at 1.3 μm. J Non Cryst Solids 185:283

    Article  Google Scholar 

  9. Zallen R (1983) The physics of amorphous solids. Wiley, New York

    Book  Google Scholar 

  10. Ling Z, Ling H, Cheng Shan Z (1995) New chalcohalide glasses from the Sb2S3–MXn system. J Non Cryst Solids 184:1

    Article  Google Scholar 

  11. Mitsa AV, Mitsa VM, Uhrin AM (2005) Modelling of spectral characteristics of inhomogeneous (gradient) anti-reflective coating, based on chalcogenide glasses. Chalcogenide Lett 2:5–7

    Google Scholar 

  12. Cable M, Parker JM (eds) (1992) High-performance glasses. Blackie, Glasgow

    Google Scholar 

  13. Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21:1450–1453

    Article  Google Scholar 

  14. Horie M, Ohno T, Nobukuni N, Kioyo K, Hahizume T (2001) Material characterization and application of eutectic SbTe-based phase-change optical recording media. Tech Dig 37: ODS2001 MC1

  15. Akiyama T, Uno M, Kitaura H, Narumi K, Kojima R, Nishiuchi K, Yamada N (2001) Rewritable dual-layer phase-change optical disk utilizing a blue-violet laser. Jpn J Appl Phys 40:1598–1603

    Article  Google Scholar 

  16. Ohta T (2001) Phase-change optical memory promotes the DVD optical disk. Adv Mater 3:609–626

    Google Scholar 

  17. Kumar H, Mehta N, Singh K (2011) Calorimetric studies of glass transition phenomenon in glassy Se80−x Te20Sn x alloys. Phys Scripta 83:065602(1–5)

    Article  Google Scholar 

  18. Sharma I, Tripathi SK, Barman PB (2008) Correlation between the physical and optical properties of the a-Ge–Se–In–Bi system. Philos Mag 88:3081–3092

    Article  Google Scholar 

  19. Modgil V, Kaistha A, Rangra VS (2013) Structural study of the quaternary Se68Te19−xSn13Bi x (x = 8, 9, 10, 11, 12) chalcogenide crystals through X-ray diffraction. Adv Appl Sci Res 4:254–263

    Google Scholar 

  20. Kumar A, Barman PB, Sharma R (2013) Crystallization kinetics of Ag-doped Se–Bi–Te chalcogenide glasses. J Therm Anal Calorim 114:1003–1013

    Article  Google Scholar 

  21. El-Samanoudy MM (2002) Alternating-current conductivity and dielectric properties of Ge25Sb15−x Bi x S60 bulk and thin film glasses. J Phys Condens Matter 14:1199–1212

    Article  Google Scholar 

  22. Gustafsson SE (1991) Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum 62:797–804

    Article  Google Scholar 

  23. Sharma A, Kumar H, Mehta N (2013) Calorimetric study of specific heat in glassy Se–Te–Sn–Bi system using MDSC technique: effect of Bi incorporation. Phase Transit 86:1–9

    Article  Google Scholar 

  24. Singhal V, Litke PJ, Black AF, Garimella SV (2005) An experimentally validated thermo-mechanical model for the prediction of thermal contact conductance. Int J Heat Mass Transf 48:5446–5459

    Article  Google Scholar 

  25. Wolff EG, Schneider DA (1998) Prediction of thermal contact resistance between polished surfaces. Int J Heat Mass Transf 41:3469–3482

    Article  Google Scholar 

  26. Banhart J, Bellmann D, Clemens H (2001) Investigation of metal foam formation by microscopy and ultra small-angle neutron scattering. Acta Mater 49:3409–3420

    Article  Google Scholar 

  27. Log T, Gustafsson SE (1995) Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater 19:43–49

    Article  Google Scholar 

  28. Gustavsson M, Karawacki E, Gustafsson SE (1994) Thermal conductivity, thermal diffusivity and specific heat of thin samples from transient measurements with hot-disk sensors. Rev Sci Instrum 65:3856–3859

    Article  Google Scholar 

  29. Sreeram AN, Swiler DR, Varshneya AK (1991) Gibbs-DiMarzio equation to describe the glass transition temperature trends in multi-component chalcogenide glasses. J Non Cryst Solids 127:287–297

    Article  Google Scholar 

  30. Mott NF, Davis EA (1971) Electronic processes in non-crystalline materials. Clarendon, Oxford, p 37

    Google Scholar 

  31. Kumar H, Mehta N (2013) Kinematical studies of thermal crystallization in glassy Se78−x Te20Sn2Bi x (0 ≤ x ≤ 6) alloys. J Adv Phys 2:163–169

    Article  Google Scholar 

  32. (1979) Properties of the elements and inorganic compounds. In: West RC (ed) CRC handbook of chemistry and physics, 60th edn. CRC Press, Inc., Florida

  33. Velinov T, Gateshki M (1997) Thermal effusivity of Ge–As–Se(S) glasses. Phys Rev B 55:11014–11017

    Article  Google Scholar 

  34. Savova E, Skordeva ER, Vateva E (1994) The topological phase transition in some Ge–Sb–S glasses and thin films. J Phys Chem Solids 55:575–758

    Article  Google Scholar 

  35. Skordeva ER, Arsova DD (1995) Topological phase transition in ternary chalcogenide films. J Non Cryst Solids 192 & 193:665–668

    Article  Google Scholar 

  36. Tichy L, Ticha H (1995) Covalent bond approach to the glass-transition temperature of chalcogenide glasses. J Non Cryst Solids 189:141–146

    Article  Google Scholar 

  37. Ioffe AF, Regel AR (1960) Non-crystalline, amorphous and liquid electronic semiconductors. Prog Semicond 4:237–291

    Google Scholar 

  38. Phillips JC (1979) Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys. J Non Cryst Solids 34:153–181

    Article  Google Scholar 

  39. Fouad SS, Fayek SA, Ali MH (1998) Physical evolution and glass forming tendency of Ge1−x Sn x Se2.5 amorphous system. Vacuum 49:25–30

    Article  Google Scholar 

  40. Tichy L, Ticha H (1994) On the chemical threshold in chalcogenide glasses. Mater Lett 21:313–319

    Article  Google Scholar 

  41. Jozef B, Stanford O, Mahadevan S, Gridhar A, Singh AK (1985) Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties. J Non Cryst Solids 74:75–84

    Article  Google Scholar 

  42. Rao KJ, Mohan R (1981) Chemical bond approach to determining conductivity band gaps in amorphous chalcogenides and pnictides. Solid State Commun 39:1065–1068

    Article  Google Scholar 

  43. Aniya M (1995) Chemical scaling of the ionic conductivity in AgI–Ag2O–M x O y glasses. Solid State Ionics 79:259–263

    Article  Google Scholar 

Download references

Acknowledgements

One of us, NM is thankful to the Department of Science and Technology (DST), New Delhi, India for providing financial assistance under Fast Track Young Scientists Scheme [Scheme No. SR/FTP/PS-054/2010]. A Sharma is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing financial support as SRF. We are also thankful to UGC, New Delhi, India for providing equipment grant to purchase TPS unit under UGC networking program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mehta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Mehta, N. Composition dependence of some thermo-physical properties of multi-component Se78−x Te20Sn2Bi x (0 ≤ x ≤ 6) chalcogenide glasses. J Mater Sci 50, 210–218 (2015). https://doi.org/10.1007/s10853-014-8580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8580-x

Keywords

Navigation