Skip to main content
Log in

Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(styrene-co-N-isopropylacrylamide)/poly(N-isopropylacrylamide-co-methacrylic acid)/polypyrrole-silver [P(St-NIPAM)/P(NIPAM-co-MAA)/PPy-Ag] composite microgels were synthesized via a one-step redox polymerization of silver ammonia ions and pyrrole monomer at room temperature, using the core–shell P(St-NIPAM)/P(NIPAM-co-MAA) thermo-sensitive polymer microgels as templates. The structure, component, and properties of the as-prepared composite microgels have been characterized by transmission electron microscope, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and UV–Vis spectrophotometer. The results indicate that the size and the dispersity of the formed PPy-Ag nanocomposite particles can be regulated by adjusting the initial concentration of the precursors. The catalytic activity for the reduction of 4-nitrophenol was regulated by varying the environment temperature. Meanwhile, the higher catalytic activity is contributed to the electron transfer from the conductive polymer PPy to the Ag nanoparticles in the polymer material matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Peng XH, Pan QM, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37:1619–1628

    Article  Google Scholar 

  2. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102:3757–3778

    Article  Google Scholar 

  3. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  Google Scholar 

  4. Medasani B, Park YH, Vasiliev I (2007) Theoretical study of the surface energy, stress, and lattice contraction of silver nanoparticles. Phys Rev B 75:235436

    Article  Google Scholar 

  5. Lee J, Park JC, Song H (2008) A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv Mater 20:1523–1528

    Article  Google Scholar 

  6. Karthikeyan B (2006) Novel synthesis and optical properties of Sm3+ doped Au-polyvinyl alcohol nanocomposite films. Chem Phys Lett 432:513–517

    Article  Google Scholar 

  7. Khanna PK, Singh N, Kulkarni D, Deshmukh S, Charan S, Adhyapak PV (2007) Water based simple synthesis of re-dispersible silver nano-particles. Mater Lett 61:3366–3370

    Article  Google Scholar 

  8. Boutros M, Denicourt-Nowicki A, Roucoux A, Gengembre L, Beaunier P, Gédéon A, Launay F (2008) A surfactant-assisted preparation of well dispersed rhodium nanoparticles within the mesopores of AlSBA-15: characterization and use in catalysis. Chem Commun (25):2920–2922

  9. Yao TJ, Wang CX, Wu J, Lin Q, Lv H, Zhang K, Yu K, Yang B (2009) Preparation of raspberry-like polypyrrole composites with applications in catalysis. J Colloid Interface Sci 338:573–577

    Article  Google Scholar 

  10. Zhang N, Xu YJ (2013) Aggregation- and leaching-resistant, reusable, and multifunctional Pd@CeO2 as a robust nanocatalyst achieved by a hollow core–shell strategy. Chem Mater 25:1979–1988

    Article  Google Scholar 

  11. Domènech B, Muñoz M, Muraviev DN, Macanás J (2011) Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication. Nano Res Lett 6:406

    Article  Google Scholar 

  12. Wang MH, Fu JW, Huang DD, Zhang C, Xu Q (2013) Silver nanoparticles-decorated polyphosphazene nanotubes: synthesis and applications. Nanoscale 5:7913–7919

    Article  Google Scholar 

  13. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816

    Article  Google Scholar 

  14. Ballauff M, Lu Y (2007) “Smart” nanoparticles: peparation, characterization and applications. Polymer 48:1815–1823

    Article  Google Scholar 

  15. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core–shell microgels. Chem Mater 19:1062–1069

    Article  Google Scholar 

  16. Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core–shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937

    Article  Google Scholar 

  17. Lu Y, Proch S, Schrinner M, Drechsler M, Kempe R, Ballauff M (2009) Thermosensitive core–shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J Mater Chem 19:3955–3961

    Article  Google Scholar 

  18. Zhang JT, Wei G, Keller TF, Gallagher H, Stötzel C, Müller FA, Gottschaldt M, Schubert US, Jandt KD (2010) Responsive hybrid polymeric/metallic nanoparticles for catalytic applications. Macromol Mater Eng 295:1049–1057

    Article  Google Scholar 

  19. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    Article  Google Scholar 

  20. Xing SX, Tan LH, Yang MX, Pan M, Lv YB, Tang QH, Yang YH, Chen HY (2009) Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. J Mater Chem 19:3286–3291

    Article  Google Scholar 

  21. Son DI, Kim JH, Park DH, Choi WK, Li FS, Ham JH, Kim TW (2008) Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer. Nanotechnology 19:055204

    Article  Google Scholar 

  22. Liu JW, Qiu JX, Miao YQ, Chen JR (2008) Preparation and characterization of Pt-polypyrrole nanocomposite for electrochemical reduction of oxygen. J Mater Sci 43:6285–6288. doi:10.1007/s10853-008-2905-6

    Article  Google Scholar 

  23. Xiao HP, Xia YY, Cai C (2013) Conducting polymer hydrogel reactor for synthesizing Au nanoparticles and its use in the reduction of p-nitrophenol. J Nanopart Res 15:1521

    Article  Google Scholar 

  24. Xue YP, Lu XF, Bian XJ, Lei JY, Wang C (2012) Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol. J Colloid Interface Sci 379:89–93

    Article  Google Scholar 

  25. Wei YY, Li L, Yang XM, Pan GL, Yan GP, Yu XH (2010) One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Res Lett 5:433–437

    Article  Google Scholar 

  26. Zhang F, Wang CC (2008) Preparation of thermoresponsive core–shell polymeric microspheres and hollow PNIPAM microgels. Colloid Polym Sci 286:889–895

    Article  Google Scholar 

  27. Zhang Y, Liu HJ, Fang Y (2011) Preparation of CuS-P(NIPAM-co-MAA) hybrid microgels with controlled surface structures. Chin J Chem 29:33–40

    Article  Google Scholar 

  28. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo XH, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk–shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233

    Article  Google Scholar 

  29. Chang BS, Sha XY, Guo J, Jiao YF, Wang CC, Yang WL (2011) Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 21:9239–9247

    Article  Google Scholar 

  30. Yin PG, Chen Y, Jiang L, You TT, Lu XY, Guo L, Yang SH (2011) Controlled dispersion of silver nanoparticles into the bulk of thermosensitive polymer microspheres: tunable plasmonic coupling by temperature detected by surface enhanced Raman scattering. Macromol Rapid Commun 32:1000–1006

    Article  Google Scholar 

  31. Liu YY, Liu XY, Yang JM, Lin DL, Chen X, Zha LS (2012) Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity. Colloids and Surfaces A 393:105–110

    Article  Google Scholar 

  32. Dong Y, Ma Y, Zhai TY, Shen FG, Zeng Y, Fu HB, Yao JN (2007) Silver nanoparticles stabilized by thermoresponsive microgel particles: synthesis and evidence of an electron donor-acceptor effect. Macromol Rapid Commun 28:2339–2345

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21173141), Key Industry Project of Shaanxi Province of China (2011K08-14), Program for Changjiang Scholars and Innovative Research Team in University of China (IRT1070), and Undergraduate Innovative Program of Shaanxi Normal University, China (201210781064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, C., Chen, Y. et al. Synthesis and catalysis of Ag nanoparticles trapped into temperature-sensitive and conductive polymers. J Mater Sci 49, 6872–6882 (2014). https://doi.org/10.1007/s10853-014-8389-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8389-7

Keywords

Navigation