Skip to main content
Log in

Electrochemical capacitance of poly(pyrrole-co-formylpyrrole)/sulfonated polystyrene layer-by-layer assembled multilayer films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(pyrrole-co-formylpyrrole), P(Py-co-FPy) was prepared on poly(4-styrenesulfonate acid) (PSS) using layer-by-layer (LBL) self-assembly process in the presence of trifluoroacetic acid (TFA) through straightforward chemical polymerization. The P(Py-co-FPy) and PSS multilayer contained homogeneous particulate surfaces with a hierarchical porous structure, depending on the number of layers and the PSS concentration. The layer cycles gave rise to increased electrical conductivity from 2.8 × 10−4 S/cm at 2 layers to 3.2 × 10−3 S/cm at 10 layers, implying the benefit of the doping effect of the sulfonic group on the improvement of electrical conductivity for multilayer films. The electrostatic interaction between the P(Py-co-FPy) and the PSS layer was confirmed from UV–visible spectra. It is enhanced by the number of layers and PSS concentration. Cyclic voltammetry and electrochemical impedance measurements showed that the electrochemical capacitance of those multilayer films is influenced by the increase of the number of layers and the PSS concentration, suggesting that the multilayer film morphology affects the electrochemical behavior.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mike JF, Lutkenhaus JL (2013) Recent advances in conjugated polymer energy storage. J Polym Sci B 51:468–480

    Article  Google Scholar 

  2. Du HY, Wang J, Yao PJ, Hao YW, Li XG (2013) Preparation of modified MWCNTs-doped PANI nanorods by oxygen plasma and their ammonia-sensing properties. J Mater Sci 48:3597–3604. doi:10.1007/s10853-013-7157-4

    Article  Google Scholar 

  3. Zhou CF, Kumar S, Doyle CD, Tour JM (2005) Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chem Mater 17:1997–2002

    Article  Google Scholar 

  4. Zhang J, Kong LB, Li H, Luo YC, Kang L (2010) Synthesis of polypyrrole film by pulse galvanostatic method and its application as supercapacitor electrode materials. J Mater Sci 45:1947–1954. doi:10.1007/s10853-009-4186-0

    Article  Google Scholar 

  5. Lu XF, Zhang W, Wang C, Wen TC, Wei Y (2011) One-dimensional conducting polymer nanocomposites: synthesis, properties and applications. Prog Polym Sci 36:671–712

    Article  Google Scholar 

  6. Wang LX, Li XG, Yang YL (2001) Preparation, properties and applications of polypyrroles. React Funct Polym 47:125–139

    Article  Google Scholar 

  7. Kaplin DA, Qutubuddin S (1995) Electrochemically synthesized polypyrrole film: effects of polymerization potential and electrolyte type. Polymer 36:1275–1286

    Article  Google Scholar 

  8. Jradi K, Bideau B, Chabot B, Daneault C (2012) Characterization of conductive composite films based on TEMPO-oxidized cellulose nanofibers and polypyrrole. J Mater Sci 47:3752–3762. doi:10.1007/s10853-011-6226-9

    Article  Google Scholar 

  9. Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J, Tang W (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52

    Article  Google Scholar 

  10. Ai H, Gao J (2004) Size-controlled polyelectrolyte nanocapsules via layer-by-layer self-assembly. J Mater Sci 39:1429–1432. doi:10.1023/B:JMSC.0000013910.63194.db

    Article  Google Scholar 

  11. Gesquière A, Jonkheijm P, Hoeben FJM, Schenning APHJ, De Feyter S, De Schryver FC, Meijer EW (2004) 2D-Structures of quadruple hydrogen bonded oligo(p-phenylenevinylene)s on graphite: self-assembly behavior and expression of chirality. Nano Lett 4:1175–1179

    Article  Google Scholar 

  12. Manna U, Dhar J, Nayak R, Patil S (2010) Multilayer single-component thin films and microcapsules via covalent bonded layer-by-layer self-assembly. Chem Comm 46:2250–2252

    Article  Google Scholar 

  13. Fou AC, Rubner MF (1995) Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in–situ polymerized p–type doped conducting polymers. Macromolecules 28:7115–7120

    Article  Google Scholar 

  14. Ferreira M, Cheung JH, Rubner MF (1994) Molecular self-assembly of conjugated polyions: a new process for fabricating multilayer thin film heterostructures. Thin Solid Films 244:806–809

    Article  Google Scholar 

  15. Lowack K, Helm CA (1998) Molecular mechanisms controlling the self-assembly process of polyelectrolyte multilayers. Macromolecules 31:823–833

    Article  Google Scholar 

  16. Simoes FR, Marchesi LFQP, Pocrifka LA, Pereira EC (2011) Investigation of electrochemical degradation process in polyaniline/polystyrene sulfonated self-assembly films by impedance spectroscopy. J Phys Chem B 115:11092–11097

    Article  Google Scholar 

  17. Lee J, Ryu J, Youn HJ (2012) Conductive paper through LbL multilayering with conductive polymer: dominant factors to increase electrical conductivity. Cellulose 19:2153–2164

    Article  Google Scholar 

  18. Feng X, Yan Z, Li R, Liu X, Hou W (2013) The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties. Polym Bull 70:2291–2304

    Article  Google Scholar 

  19. Schrote K, Frey MW (2013) Effect of irradiation on poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) nanofiber conductivity. Polymer 54:737–742

    Article  Google Scholar 

  20. Mihranyan A, Esmaeili M, Razaq A, Alexeichik D, Lindstrom T (2012) Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J Mater Sci 47:4463–4472. doi:10.1007/s10853-012-6305-6

    Article  Google Scholar 

  21. Hoshina Y, Kabayashi T (2012) Electrically conductive films made of pyrrole-formyl pyrrole by straightforward chemical copolymerization. Ind Eng Chem Res 51:5961–5966

    Article  Google Scholar 

  22. Tagaya M, Hoshina Y, Ogawab N, Takeguchic M, Kobayashia T (2013) Nanostructural analysis of self-standing pyrrole/2-formylpyrrole copolymer. Micron 46:22–26

    Article  Google Scholar 

  23. Hong H, Davidov D, Avany Y, Chayet H, Faraggi EZ, Neumann R (1995) Electroluminescence, photoluminescence and X-ray reflectivity studies of self-assembled ultra-thin films. Adv Mater 7:846–849

    Article  Google Scholar 

  24. Ram MK, Salerno M, Adami M, Faraci P, Nicolini C (1999) Physical properties of polyaniline films: assembled by the layer-by-layer technique. Langmuir 15:1252–1259

    Article  Google Scholar 

  25. Xie YB, Du HG (2012) Electrochemical capacitance performance of polypyrrole–titania nanotube hybrid. J Solid State Electrochem 16:2683–2689

    Article  Google Scholar 

  26. Chen NP, Hong LA (2001) A study on polypyrrole-coated polystyrene sulfonic acid microspheres—a proton electrolyte. Eur Polym J 37:1027–1035

    Article  Google Scholar 

  27. Li D, Ding WY, Wang X, Lu L, Yang XJ (2001) Modifying substrate surfaces with self-assembled polyelectrolyte layers to promote the formation of uniform polypyrrole films. Appl Surf Sci 183:259–263

    Article  Google Scholar 

  28. Qu L, Shi G (2004) Hollow microstructures of polypyrrole doped by poly(styrene sulfonic acid). J Polym Sci A 42:3170–3177

    Article  Google Scholar 

  29. Dominis AJ, Spinks GM, Kane-Maguire LAP, Wallace GGA (2002) A de-doping/re-doping study of organic soluble polyaniline. Synth Met 129:165–172

    Article  Google Scholar 

  30. Wang K, Hoshina Y, Cao Y, Kabayashi T (2013) Novel metal-like luster conductive Film made of pyrrole and furfural in straightforward chemical copolymerization in straightforward chemical copolymerization. Ind Eng Chem Res 52:2762–2771

    Article  Google Scholar 

  31. Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M (2007) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 17:3083–3087

    Article  Google Scholar 

  32. Mostany J, Scharifker BR (1997) Impedance spectroscopy of undoped, doped and overoxidized polypyrrole films. Synth Met 87:179–185

    Article  Google Scholar 

  33. Chen H, Guo LH, Ferhan AR, Kim DH (2011) Multilayered polypyrrole-coated carbon nanotubes to improve functional stability and electrical properties of neural electrodes. J Phys Chem C 115:5492–5499

    Article  Google Scholar 

  34. Ren XM, Pickup PG (1996) Impedance spectroscopy of polypyrrole/poly (styrenesulphonate) composites. Simultaneous anion and cation transport. J Electrochim Acta 41:1877–1882

    Article  Google Scholar 

  35. Suppes GM, Deore BA, Freund MS (2008) Porous conducting polymer/heteropolyoxometalate hybrid material for electrochemical supercapacitor applications. Langmuir 24:1064–1069

    Article  Google Scholar 

  36. Menshykau D, Streeter I, Compton RG (2008) Influence of electrode roughness on cyclic voltammetry. J Phys Chem C 112:14428–14438

    Article  Google Scholar 

  37. Douglass JEF, Driscoll PE, Liu D, Burnham NA, Lambert CR, McGimpsey WG (2008) Effect of electrode roughness on the capacitive behavior of self-assembled monolayers. Anal Chem 80:7670–7677

    Article  Google Scholar 

  38. Jiang L, Yan JW, Xue R, Hao LX, Jiang L, Sun GQ, Yi BL (2014) Hierarchically porous carbons with partially graphitized structures for high rate supercapacitors. J Mater Sci 49:363–370. doi:10.1007/s10853-013-7713-y

    Article  Google Scholar 

  39. Yang C, Liu P, Wang T (2011) Well-defined core-shell carbon black/polypyrrole nanocomposites for electrochemical energy storage. ACS Appl Mater Interfaces 3:1109–1114

    Article  Google Scholar 

  40. Li NT, Tang SC, Dai YM, Meng XK (2014) The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. J Mater Sci 49:2802–2809. doi:10.1007/s10853-013-7986-1

    Article  Google Scholar 

  41. Marchesi L, Simoes FR, Pocrifka LA, Pereira EC (2011) Investigation of polypyrrole degradation using electrochemical impedance spectroscopy. J Phys Chem B115:9570–9575

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaomi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Cao, Y., Tagaya, M. et al. Electrochemical capacitance of poly(pyrrole-co-formylpyrrole)/sulfonated polystyrene layer-by-layer assembled multilayer films. J Mater Sci 49, 5746–5756 (2014). https://doi.org/10.1007/s10853-014-8293-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8293-1

Keywords

Navigation