Skip to main content
Log in

Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) functionalized with cyclotriphosphazene-containing polyphosphazenes (PZS) were found to cause the facile immobilization of Au nanoparticles on the surface. The PZS functional layers not only improved the dispersion of CNTs in aqueous solution but also used as a platform for subsequent immobilization of Au nanoparticles. The functionalized CNTs and the Au@PZS@CNTs nanohybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric analysis, Atomic absorption spectrum, and X-ray photoelectron spectroscopy. The results showed that the PZS layers with thickness of about 25 nm were formed uniformly on CNT surfaces by polycondensation between hexachlorocyclotriphosphazene and 4,4′-sulfonyldiphenol, and that high density of homogeneously dispersed spherical Au nanoparticles with average size of 6 nm was immobilized on their outer surface. Meanwhile, the catalytic activity and reusability of the Au@PZS@CNTs nanohybrids were investigated by employing the reduction of 4-nitrophenol into 4-aminophenol by NaBH4 as a model reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  Google Scholar 

  2. Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38:757–771

    Article  Google Scholar 

  3. Liang M, Su RX, Qi W, Yu YJ, Wang LB, He ZM (2014) Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49:1639–1647. doi:10.1007/s10853-013-7847-y

    Article  Google Scholar 

  4. Tang SC, Vongehr S, Meng XK (2010) Controllable incorporation of Ag and Ag–Au nanoparticles in carbonspheres for tunable optical and catalytic properties. J Mater Chem 20:5345–5436

    Article  Google Scholar 

  5. Neouze M-A (2013) Nanoparticle assemblies: main synthesis pathways and brief overview on some important applications. J Mater Sci 48:7321–7349. doi:10.1007/s10853-013-7542-z

    Article  Google Scholar 

  6. John J, Gravel E, Hagege A, Li HY, Gacoin T, Doris E (2011) Catalytic oxidation of silanes by carbon nanotube–gold nanohybrids. Angew Chem Int Ed 50:7533–7536

    Article  Google Scholar 

  7. Cutrufello MG, Rombi E, Cannas C, Casu M, Virga A, Fiorilli S, Onida B, Ferino I (2009) Synthesis, characterization and catalytic activity of Au supported on functionalized SBA-15 for low temperature CO oxidation. J Mater Sci 44:6644–6653. doi:10.1007/s10853-009-3510-z

    Article  Google Scholar 

  8. Liu Y, Fan Y, Yuan Y, Chen Y, Cheng F, Jiang SC (2012) Amphiphilic hyperbranched copolymers bearing a hyperbranched core and a dendritic shell as novel stabilizers rendering gold nanoparticles with an unprecedentedly long lifetime in the catalytic reduction of 4-nitrophenol. J Mater Chem 22:21173–21182

    Article  Google Scholar 

  9. Idakiev V, Tabakova T, Tenchev K, Yuan ZY, Ren TZ, Vantomme A, Su BL (2009) Gold nanoparticles supported on ceria-modified mesoporous–macroporous binary metal oxides as highly active catalysts for low-temperature water–gas shift reaction. J Mater Sci 44:6637–6643. doi:10.1007/s10853-009-3574-9

    Article  Google Scholar 

  10. Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878

    Article  Google Scholar 

  11. Carabineiroa SAC, Martinsb LMDRS, Avalos-Borjad M, Buijnsterse JG, Pombeiroc AJL, Figueiredo JL (2013) Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl Catal A 467:279–290

    Article  Google Scholar 

  12. Jarrais B, Silva AR, Ribeiro LS, Rodrigues EG, Orfao JJM, Pereira MFR, Figueiredo JL, Freire C (2013) Spontaneous gold decoration of activated carbons. Inorg Chim Acta 408:235–239

    Article  Google Scholar 

  13. Wang D, Villa A, Su DS, Prati L, Schlogl R (2013) Carbon-supported gold nanocatalysts: shape effect in the selective glycerol oxidation. ChemCatChem 5:2717–2723

    Article  Google Scholar 

  14. Cui Y, Kuang YJ, Zhang XH, Liu B, Chen JH (2013) Spontaneous deposition of Pt nanoparticles on Poly(diallyldimethylammonium chloride)/CARBON NANOTUBE HYBRIDS and their electrocatalytic oxidation of methanol. Acta Phys Chim Sin 29:989–995

    Google Scholar 

  15. Zhang YF, Xu CL, Li BX, Li YB (2013) In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens Bioelectron 43:205–210

    Article  Google Scholar 

  16. Kumar R, Gravel E, Hagege A, Li HY, Jawale DV, Verma D, Namboothiri INN, Doris E (2013) Carbon nanotube-gold nanohybrids for selective catalytic oxidation of alcohols. Nanoscale 5:6491–6497

    Article  Google Scholar 

  17. Kumar R, Gravel E, Hagege A, Li HY, Verma D, Namboothiri INN, Doris E (2013) Direct reductive amination of aldehydes catalyzed by carbon nanotube/gold nanohybrids. ChemCatChem 5:3571–3575

    Article  Google Scholar 

  18. John J, Gravel E, Namboothiri INN, Doris E (2012) Advances in carbon nanotube-noble metal catalyzed organic transformations. Nanotechnol Rev 1:515–539

    Article  Google Scholar 

  19. Vijwani H, Mukhopadhyay SM (2012) Palladium nanoparticles on hierarchical carbon surfaces: a new architecture for robust nano-catalysts. Appl Surf Sci 263:712–721

    Article  Google Scholar 

  20. Quinn BM, Lemay SG (2006) Single-walled carbon nanotubes as templates and interconnects for nanoelectrodes. Adv Mater 18:855–859

    Article  Google Scholar 

  21. Serp P, Corrias M, Kalck P (2003) Carbon nanotubes and nanofibers in catalysis. Appl Catal A 253:337–358

    Article  Google Scholar 

  22. Liu XC, Wang GC, Liang RP, Shi L, Qiu JD (2013) Environment-friendly facile synthesis of Pt nanoparticles supported on polydopamine modified carbon materials. J Mater Chem A 1:3945–3953

    Article  Google Scholar 

  23. Auer E, Freund A, Pietsch J, Tacke T (1998) Carbons as supports for industrial precious metal catalysts. Appl Catal A 173:259–271

    Article  Google Scholar 

  24. Murugan E, Vimala G (2013) Synthesis, characterization, and catalytic activity for hybrids of multi-walled carbon nanotube and amphiphilic poly(propyleneimine) dendrimer immobilized with silver and palladium nanoparticle. J Colloid Interface Sci 396:101–111

    Article  Google Scholar 

  25. Eder D (2010) Carbon nanotube-inorganic hybrids. Chem Rev 110:1348–1385

    Article  Google Scholar 

  26. Yuan WZ, Sun JZ, Dong YQ, Haussler M, Yang F, Xu HP, Qin AJ, Lam JWY, Zheng Q, Tang BZ (2006) Wrapping carbon nanotubes in pyrene-Containing poly(phenylacetylene) chains: solubility, stability, light emission, and surface photovoltaic properties. Macromolecules 39:8011–8020

    Article  Google Scholar 

  27. Petrov P, Stassin F, Pagnoulle C, Jerome R (2003) Noncovalent functionalization of multi-walled carbon nanotubes by pyrene containing polymers. Chem Commun 23:2904–2905

    Article  Google Scholar 

  28. Yuan WZ, Sun JZ, Liu JZ, Dong YQ, Li Z, Xu HP, Qin A, Haussler M, Jin JK, Zheng Q, Tang BZ (2008) Processable hybrids of ferrocene-containing poly(phenylacetylene)s and carbon nanotubes: fabrication and properties. J Phys Chem B 112:8896–8905

    Article  Google Scholar 

  29. Lou XD, Daussin R, Cuenot S, Duwez AS, Pagnoulle C, Detrembleur C, Bailly C, Jerome R (2004) Synthesis of pyrene-containing polymers and noncovalent sidewall functionalization of multiwalled carbon nanotubes. Chem Mater 16:4005–4011

    Article  Google Scholar 

  30. Kang YJ, Taton TA (2003) Micelle-encapsulated carbon nanotubes: a route to nanotube composites. J Am Chem Soc 125:5650–5651

    Article  Google Scholar 

  31. Liu ZL, Su FB, Zhang XH, Tay SW (2011) Preparation and characterization of PtRu nanoparticles supported on nitrogen-doped porous carbon for electrooxidation of methanol. ACS Appl Mater Interfaces 3:3824–3830

    Article  Google Scholar 

  32. Richards PI, Steiner A (2004) Cyclophosphazenes as nodal ligands in coordination polymers. Inorg Chem 43:2810–2817

    Article  Google Scholar 

  33. Fu JW, Wang MH, Zhang C, Wang XZ, Wang HF, Xu Q (2013) Template-induced covalent assembly of hybrid particles for the facile fabrication of magnetic Fe3O4–polymer hybrid hollow microspheres. J Mater Sci 48:3557–3565. doi:10.1007/s10853-013-7150-y

    Article  Google Scholar 

  34. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  35. Shenhar R, Norsten TB, Rotello VW (2005) Polymer-mediated nanoparticle assembly: structural control and applications. Adv Mater 17:657–669

    Article  Google Scholar 

  36. Pang S, Kondo T, Kawai T (2005) Formation of dendrimer-like gold nanoparticle assemblies. Chem Mater 17:3636–3641

    Article  Google Scholar 

  37. Hussain I, Graham S, Wang Z, Tan B, Cooper AI, Brust M (2005) Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J Am Chem Soc 127:16398–16399

    Article  Google Scholar 

  38. Fu JW, Xu Q, Chen JF, Chen ZM, Huang XB, Tang XZ (2010) Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem Commun 46:6563–6565

    Article  Google Scholar 

  39. Fu JW, Huang XB, Huang YW, Zhang JW, Tang XZ (2009) One-pot noncovalent method to functionalize multi-walled carbon nanotubes using cyclomatrix-type polyphosphazenes. Chem Commun 9:1049–1051

    Article  Google Scholar 

  40. Zhang ZQ, Wu YH (2011) NaBH4-induced assembly of immobilized au nanoparticles into chainlike structures on a chemically modified glass surface. Langmuir 27:9834–9842

    Article  Google Scholar 

  41. Tunc I, Guvenc HO, Sezen H, Suze S, Correa-Duarte MA, Liz-Marzan LM (2008) Optical response of Ag–Au bimetallic nanoparticles to electron storage in aqueous medium. J Nanosci Nanotechnol 8:3003–3007

    Article  Google Scholar 

  42. Lin SY, Tsai YT, Chen CC, Lin CM, Chen C (2004) Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles. J Phys Chem B 108:2134–2139

    Article  Google Scholar 

  43. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    Article  Google Scholar 

  44. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735–743

    Article  Google Scholar 

  45. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties. Science 281:1647–1650

    Article  Google Scholar 

  46. Hodak JH, Henglein A, Hartland GV (2000) Photophysics of nanometer sized metal particles: electron-phonon coupling and coherent excitation of breathing vibrational modes. J Phys Chem B 104:9954–9965

    Article  Google Scholar 

  47. Belloni J (1996) Metal nanocolloids. Curr Opin Colloid Interface Sci 1:184–196

    Article  Google Scholar 

  48. Link S, Burda C, Wang ZL, El-Sayed MA (1999) Electron dynamics in gold and gold-silver alloy nanoparticles: the influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J Chem Phys 111:1255–1264

    Article  Google Scholar 

  49. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  Google Scholar 

  50. Creighton JA, Eadon DG (1991) Ultraviolet-visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891

    Article  Google Scholar 

  51. Henglein A (1993) Physicochemical properties of small metal particles in solution: “microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97:5457–5471

    Article  Google Scholar 

  52. Zhu L, Xu YY, Yuan WZ, Xi JY, Huang XB, Tang XZ, Zheng SX (2006) One-pot synthesis of poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) nanotubes via an in situ template approach. Adv Mater 18:2997–3000

    Article  Google Scholar 

  53. Liu W, Yang XL, Xie L (2007) Size-controlled gold nanocolloids on polymer microsphere-stabilizer via interaction between functional groups and gold nanocolloids. J Colloid Interface Sci 313:494–502

    Article  Google Scholar 

  54. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  Google Scholar 

  55. Nakasoa K, Shimadaa M, Okuyamaa K, Depper K (2002) Evaluation of the change in the morphology of gold nanoparticles during sintering. J Aerosol Sci 33:1061–1074

    Article  Google Scholar 

  56. Jana D, Dandapat A, De G (2010) Anisotropic gold nanoparticle doped mesoporous boehmite films and their use as reusable catalysts in electron transfer reactions. Langmuir 26:12177–12184

    Article  Google Scholar 

  57. Liu J, Qin G, Raveendran P, Ikushima Y (2006) Facile ″Green″ Synthesis, characterization, and catalytic function of β-d-glucose-stabilized Au nanocrystals. Chem Eur J 12:2131–2138

    Article  Google Scholar 

  58. Hayakawa K, Yoshimura T, Esumi K (2003) Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 19:5517–5521

    Article  Google Scholar 

  59. Zhang MM, Liu L, Wu CL, Fu GQ, Zhao HY, He BL (2007) Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 48:1989–1997

    Article  Google Scholar 

  60. Zhang YW, Liu S, Lu WB, Wang L, Tian JQ, Sun XP (2011) In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol. Catal Sci Technol 1:1142–1144

    Article  Google Scholar 

  61. Wang WN, Meng Z, Zhang QH, Jia XD, Xi K (2014) Synthesis of stable Au-SiO2 composite nanospheres with good catalytic activity and SERS effect. J Colloid Interface Sci 15:1–7

    Google Scholar 

Download references

Acknowledgements

We are grateful to the National Natural Science Foundation of China (Nos. 51003098, 51173170), the Foundation of State Key Laboratory of Chemical Engineering (No. SKL-ChE-13A04), the Foundation of Henan Educational Committee for Key Program of Science and Technology (Nos. 12A430014, 14A430026), and the financial support from the Program for New Century Excellent Talents in Universities (NCET).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianwei Fu or Qun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Fu, J., Wang, M. et al. Facile synthesis of Au nanoparticles supported on polyphosphazene functionalized carbon nanotubes for catalytic reduction of 4-nitrophenol. J Mater Sci 49, 5056–5065 (2014). https://doi.org/10.1007/s10853-014-8212-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8212-5

Keywords

Navigation