Skip to main content
Log in

Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene fluoride)/NaY zeolite-filled membranes

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) electrospun membranes have been prepared with different NaY zeolite contents up to 32 wt%. Inclusion of zeolites induces an increase of average fiber size from ~200 nm in the pure polymer up to ~500 nm in the composite with 16 wt% zeolite content. For higher filler contents, a wider distribution of fibers occurs leading to a broader size distribution between the previous fiber size values. Hydrophobicity of the membranes increases from ~115º water contact angle to ~128º with the addition of the filler and is independent on filler content, indicating a wrapping of the zeolite by the polymer. The water contact angle further increases with fiber alignment up to ~137°. Electrospun membranes are formed with ~80 % of the polymer crystalline phase in the electroactive β phase, independently on the electrospinning processing conditions or filler content. Viability of MC3T3-E1 cells on the composite membranes after 72 h of cell culture indicates the suitability of the membranes for tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Martins P, Lopes AC, Lanceros-Mendez S (2013) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci. doi:10.1016/j.progpolymsci.2013.07.006

    Google Scholar 

  2. Mistry AS, Pham QP, Schouten C, Yeh T, Christenson EM, Mikos AG et al (2010) In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering. J Biomed Mater Res A 92:451–462

    Google Scholar 

  3. Ghosh S (2004) Recent research and development in synthetic polymer-based drug delivery systems. J Chem Res 4:241–246

    Article  Google Scholar 

  4. Prest WM, Luca DJ (1978) Formation of gamma-phase from alpha-polymorphs and beta-polymorphs of polyvinylidene fluoride. J Appl Phys 49:5042–5047

    Article  Google Scholar 

  5. Gregorio R, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). J Polym Sci Polym Phys 32:859–870

    Article  Google Scholar 

  6. Sencadas V, Moreira VM, Lanceros-Mendéz S, Pouzada AS, Gregório R Jr (2006) α - To - β transformation on PVDF films obtained by uniaxial stretch. Mater Sci Forum 514:872–876

    Article  Google Scholar 

  7. Sencadas V, Gregorio Filho R, Lanceros-Mendez S (2006) Processing and characterization of a novel nonporous poly(vinilidene fluoride) films in the β phase. J Non-Cryst Solids 352:2226–2229

    Article  Google Scholar 

  8. Firmino Mendes S, Costa CM, Sencadas V et al (2009) Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectric behavior of poly(vinilidene fluoride). Appl Phys A 96:1037

    Article  Google Scholar 

  9. Martins P, Costa CM, Botelho G, Lanceros-Mendez S, Barandiaran JM, Gutierrez J (2012) Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater Chem Phys 131:698–705

    Article  Google Scholar 

  10. Corma A, Martinez A (1995) Zeolites and zeotypes as catalysts. Adv Mater 7:137–144

    Article  Google Scholar 

  11. Martínez C, Corma A (2011) Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coordin Chem Rev 255:1558–1580

    Article  Google Scholar 

  12. Dong Y, Chen S, Zhang X, Yang J, Liu X, Meng G (2006) Fabrication and characterization of low cost tubular mineral-based ceramic membranes for micro-filtration from natural zeolite. J Membrane Sci 281:592–599

    Article  Google Scholar 

  13. Bae D, Park H, Kim JS, Lee Jb, Kwon OY, Kim KY et al (2008) Hydrogen adsorption in organic ion-exchanged zeolites. J Phys Chem Solids 69:1152–1154

    Article  Google Scholar 

  14. Townsend RP, Coker EN (2001) Ion exchange in zeolites. Stud Surf Sci Catal 137:467–524

    Article  Google Scholar 

  15. Lopes AC, Caparros C, Ferdov S, Lanceros-Mendez S (2013) Influence of zeolite structure and chemistry on the electrical response and crystallization phase of poly(vinylidene fluoride). J Mater Sci 48:2199–2206. doi:10.1007/s10853-012-6995-9

    Article  Google Scholar 

  16. Lopes AC, Caparros C, Ribelles JLG, Neves IC, Lanceros-Mendez S (2012) Electrical and thermal behavior of gamma-phase poly(vinylidene fluoride)/NaY zeolite composites. Micropor Mesopor Mater 161:98–105

    Article  Google Scholar 

  17. Gonçalves R, Lopes AC, Botelho G, Neves IC, Lanceros-Mendez S (2013) Influence of solvent properties on the electrical response of poly(vinylidene fluoride)/NaY composites. J Polym Res 20. doi:10.1007/s10965-013-0143-3

  18. Lopes AC, Gonçalves R, Costa CM, Fonseca AM, Botelho G, Neves IC, Lanceros-Mendez S (2012) Effect of zeolite content in the electrical, mechanical and thermal degradation response of poly/vinylidene fluoride)/NaY zeolite composites. J Nanosci Nanotechnol 12:6804–6810

    Article  Google Scholar 

  19. Nunes-Pereira J, Lopes AC, Costa CM, Rodrigues LC, Silva MM, Lanceros-Mendez S (2013) Microporous membranes of NaY zeolite/poly(vinylidene fluoride-trifluoroethylene) for Li-ion battery separators. J Electroanal Chem 689:223–232

    Article  Google Scholar 

  20. Shi H, Liu F, Xue L (2013) Fabrication and characterization of antibacterial PVDF hollow fibre membrane by doping Ag-loaded zeolites. J Membrane Sci 437:205–215

    Article  Google Scholar 

  21. Costa R, Ribeiro C, Lopes AC, Martins P, Sencadas V, Soares R et al (2013) Osteoblast, fibroblast and in vivo biological response to poly(vinylidene fluoride) based composite materials. J Mater Sci 24:395–403. doi:10.1007/s10856-012-4808-y

    Google Scholar 

  22. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  Google Scholar 

  23. Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater 8:274–287

    Article  Google Scholar 

  24. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621

    Article  Google Scholar 

  25. Naderi H, Matin MM, Bahrami AR (2011) Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26:383–417

    Article  Google Scholar 

  26. Ratner BD (2004) Biomaterials science an introduction to materials in medicine. Elsevier Academic Press, Amsterdam; Boston

    Google Scholar 

  27. Rebollar E, Frischauf I, Olbrich M, Peterbauer T, Hering S, Preiner J et al (2008) Proliferation of aligned mammalian cells on laser-nanostructured polystyrene. Biomaterials 29:1796–1806

    Article  Google Scholar 

  28. Ribeiro C, Moreira S, Correia V, Sencadas V, Rocha JG, Gama FM et al (2012) Enhanced proliferation of pre-osteoblastic cells by dynamic piezoelectric stimulation. RSC Adv 2:11504–11509

    Article  Google Scholar 

  29. Areias AC, Ribeiro C, Sencadas V, Garcia-Giralt N, Diez-Perez A, Gómez Ribelles JL et al (2012) Influence of crystallinity and fiber orientation on hydrophobicity and biological response of poly(l-lactide) electrospun mats. Soft Matter 8:5818–5825

    Article  Google Scholar 

  30. Mikulikova R, Moritz S, Gumpenberger T et al (2005) Cell microarrays on photochemically modified polytetrafluoroethylene. Biomaterials 26:5572–5580

    Article  Google Scholar 

  31. Hu Q, Wu H, Zhang L, Fong H, Tian M (2012) Rubber composite fibers containing silver nanoparticles prepared by electrospinning and in situ chemical crosslinking. Express Polym Lett 6:258–265

    Article  Google Scholar 

  32. Choi JM, Jang HC, Hyeon JY, Sok JH (2012) Fabrication of PCL/MWCNTs nanofiber by electrospinning. Korean J Met Mater 50:763–768

    Google Scholar 

  33. Gai GQ, Wang LY, Dong XT et al (2013) Electrospinning preparation and properties of magnetic-photoluminescent bifunctional bistrand-aligned composite nanofibers bundles. J Nanoparticle Res 15:1539

    Article  Google Scholar 

  34. Li Q, Chen Y, Lee DJ, Li F, Kim H (2012) Preparation of Y-zeolite/CoCl2 doped PVDF composite nanofiber and its application in hydrogen production. Energy 38:144–150

    Article  Google Scholar 

  35. Madhugiri S, Dalton A, Gutierrez J, Ferraris JP, Balkus KJ Jr (2003) Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J Am Chem Soc 125:14531–14538

    Article  Google Scholar 

  36. Cucchi I, Spano F, Giovanella U, Catellani M, Varesano A, Calzaferri G et al (2007) Fluorescent electrospun nanofibers embedding dye-loaded zeolite crystals. Small 3:305–309

    Article  Google Scholar 

  37. Chiang AST, Chao KJ (2001) Membranes and films of zeolite and zeolite-like materials. J Phys Chem Solids 62:1899–1910

    Article  Google Scholar 

  38. Keeting PE, Oursler MJ, Wiegand KE, Bonde SK, Spelsberg TC, Riggs BL (1992) Zeolite-A increases proliferation, differentiation, and transforming growth-factor-beta production in normal adult human osteoblast-like cells in vitro. J Bone Miner Res 7:1281–1289

    Article  Google Scholar 

  39. Firling CE, Evans GL, Wakley GK, Sibonga J, Turner RT (1996) Lack of an effect of sodium zeolite A on rat tibia histomorphometry. J Bone Miner Res 11:254–263

    Article  Google Scholar 

  40. Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, Ramón-Torregrosa PJ, Díaz-Rodríguez L, García-Martínez O et al (2010) Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf B 365:222. doi:10.1016/j.colsurfa.2009.12.017

    Article  Google Scholar 

  41. Bellat J-P, Paulin C, Jeffroy M, Boutin A, Paillaud J-L, Patarin J et al (2009) Unusual hysteresis loop in the adsorption—desorption of water in NaY zeolite at very low pressure. J Phys Chem C 113:8287–8295

    Article  Google Scholar 

  42. Zheng J, He A, Li J, Han CC (2007) Polymorphism control of poly(vinylidene fluoride) through electrospinning. Macromol Rapid Commun 28:2159–2162

    Article  Google Scholar 

  43. Salimi A, Yousefi AA (2003) FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22:699–704

    Article  Google Scholar 

  44. Lanceros-Méndez S, Mano JF, Costa AM, Schmidt VH (2001) FTIR and DSC studies of mechanically deformed β-PVDF films. J Macromol Sci Phys 40:517–527

    Article  Google Scholar 

  45. Lovinger AJ (1982) In: Bassett DC (ed) Developments in crystalline polymers-1. Elsevier, London

    Google Scholar 

  46. Amorim R, Vilaça N, Martinho O, Reis RM, Sardo M, Rocha J, Fonseca AM, Baltazar F, Neves IC (2012) Zeolite structures loading with an anticancer compound as drug delivery systems. J Phys Chem C 116:25642–25650

    Article  Google Scholar 

  47. Čík G, Bujdáková H, Šeršeň F (2001) Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels. Chemosphere 44:313–319

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2011 and the project Matepro-Optimizing Materials and Processes, “ref. NORTE-07-0124-FEDER-000037,” co-funded by the “Programa Operacional Regional do Norte” (ON.2—O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). A.C.L., C.R., and V.S. thank the support of the FCT (Grants SFRH/BD/62507/2009, SFRH/BPD/90870/2012 and SFRH/BPD/63148/2009 respectively).We also thank the support from the COST Action MP0902, Composites of Inorganic Nanotubes and Polymers, COINAPO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, A.C., Ribeiro, C., Sencadas, V. et al. Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene fluoride)/NaY zeolite-filled membranes. J Mater Sci 49, 3361–3370 (2014). https://doi.org/10.1007/s10853-014-8043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8043-4

Keywords

Navigation