Skip to main content
Log in

Local delamination on heavily deformed polymer–metal interfaces: evidence from microscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work the microstructure of interfaces present in heavily bi-axially deformed polymer-coated metal is studied. Cross sections of deformed polymer-coated steel are prepared using several polishing strategies, including the use of focused ion beam, and are imaged using optical microscopy and scanning electron microscopy. We find that the interfaces show significant details right down to the smallest scale observable with the preparation techniques used of about ~10 nm. Local delamination events at these deformed interfaces are observed and are found to be preferentially associated with overhanging parts on the interface. Overhanging parts are frequently observed, but only below a certain length-scale on the interfaces that are otherwise found to be self-affine up to a certain correlation length. The smallest detail includes the tail of the size distribution of the overhanging features. Together this suggests that the physical mechanisms determining the formation of critical features for adhesion operate at sub-grain level as well as at grain level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boelen B, den Hartog H, van der Weijde H (2004) Prog Org Coat 50:40

    Article  CAS  Google Scholar 

  2. Zumelzu E, Rull F, Boettcher AA (2006) J Mater Process Technol 173:34

    Article  CAS  Google Scholar 

  3. Zhang X, Boelen B, Beentjes P et al (2007) Prog Org Coat 60:335

    Article  CAS  Google Scholar 

  4. De Vooys A, Boelen B, Penning JP, van der Weijde H (2009) Prog Org Coat 65:30

    Article  Google Scholar 

  5. Van den Bosch MJ, Schreurs PJG, Geers MGD (2009) J Mater Process Technol 209:297

    Article  Google Scholar 

  6. Zaiser M, Grasset F, Koutsos V, Aifantis E (2004) Phys Rev Lett. doi:10.1103/PhysRevLett.93.195507

    Google Scholar 

  7. Wouters O, Vellinga W, Van Tijum R, De Hosson JTM (2006) Acta Mater 54:2813

    Article  CAS  Google Scholar 

  8. Wouters O, Vellinga W, Van Tijum R, de Hosson J (2005) Acta Mater 53:4043. doi:10.1016/j.actamat.2005.05.007

    Article  CAS  Google Scholar 

  9. Van den Bosch MJ, Schreurs PJG, Geers MGD, van Maris MPFHL (2008) Mech Mater 40:302. doi:10.1016/j.mechmat.2007.09.002

    Article  Google Scholar 

  10. Fedorov A, De Hosson JTM (2005) J Appl Phys 97:123510. doi:10.1063/1.1929858

    Article  ADS  Google Scholar 

  11. Fedorov A, van Tijum R, Vellinga WP, De Hosson JTM (2007) J Appl Phys 101:043520. doi:10.1063/1.2434805

    Article  ADS  Google Scholar 

  12. Zumelzu E, Ortega C, Rull F, Cabezas C (2011) Surf Eng 27:485. doi:10.1179/026708410X12687356948436

    Article  CAS  Google Scholar 

  13. Zumelzu E, Rull F, Ortega C, Cabezas C (2009) J Appl Polym Sci 113:1853. doi:10.1002/app.30077

    Article  CAS  Google Scholar 

  14. Zumelzu E, Rull F, Boettcher A (2005) Ing Quim 27:13

    Google Scholar 

  15. Kamm G, Wiley A, Linde N (1969) J Electrochem Soc 116:1299. doi:10.1149/1.2412305

    Article  Google Scholar 

  16. Beentjes P (2004) Ph.D. Thesis, Delft University of Technology, Delft

  17. Zumelzu E, Cabezas C, Delgado F (2004) J Mater Process Technol 152:384

    Article  CAS  Google Scholar 

  18. Zhao, Wang, Lu (2000) Principles and Applications, vol 1st ed. Academic press, San Diego, p 277

    Google Scholar 

  19. Mulder J, Nagy GT, Šuštarič P et al (2010) AIP Conf Proc (USA) 1252:762

    Article  CAS  ADS  Google Scholar 

  20. Rabinowitz S, Ward I, Parry JSC (1970) J Mater Sci 5:29. doi:10.1007/BF02427181

    Article  CAS  ADS  Google Scholar 

  21. Xu X, Needleman A et al (1993) Model Simul Mater Sci Eng 1:111

    Article  ADS  Google Scholar 

  22. Persson B (2002) Phys Rev Lett. doi:10.1103/PhysRevLett.89.245502

    Google Scholar 

  23. Persson BNJ (2006) Surf Sci Rep 61:201. doi:10.1016/j.surfrep.2006.04.001

    Article  MathSciNet  CAS  ADS  Google Scholar 

  24. Persson BNJ (2001) J Chem Phys 115:3840. doi:10.1063/1.1388626

    Article  CAS  ADS  Google Scholar 

  25. Peressadko A, Hosoda N, Persson B (2005) Phys Rev Lett. doi:10.1103/PhysRevLett.95.124301

    PubMed  Google Scholar 

  26. Van Tijum R, Vellinga W, De Hosson JTM (2007) Acta Mater 55:2757

    Article  Google Scholar 

  27. Van Tijum R, Vellinga WP, De Hosson JTM (2007) J Mater Sci 42:3529. doi:10.1007/s10853-006-1374-z

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This research was carried out under project number M63.7.09343 in the framework of the Research Program of the Materials Innovation Institute M2i (www.m2i.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Th. M. De Hosson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faber, E.T., Vellinga, W.P. & De Hosson, J.T.M. Local delamination on heavily deformed polymer–metal interfaces: evidence from microscopy. J Mater Sci 49, 691–700 (2014). https://doi.org/10.1007/s10853-013-7750-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7750-6

Keywords

Navigation