Skip to main content
Log in

Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, microfibrillated cellulose (MFC) and dendritic copper were used as binder and conductive phase for the elaboration of self-standing conductive films and coatings. A filtration technique was used to prepare MFC/Cu films from particle dispersions in water and ethanol. In aqueous slurries copper oxidized and an additional corona treatment or the use of zinc particles as sacrificial anode were necessary to obtain films with conductivities ranging from 70 to 2500 S m−1, respectively. In ethanol-based MFC/Cu slurries, copper was subjected to limited oxidation. However, the low packing density of conductive particles (below the percolation threshold) led to resistive films which, after densification by calendering, displayed extremely high conductivities, up to 70000 S m−1. Aqueous MFC/Cu slurries were successfully used for the deposition of conductive coatings on copy paper by Mayer rod coating and screen printing, which were subsequently treated by corona discharge and calendering. The obtained coatings displayed intermediate conductivity (i.e. 95 and 570 S m−1 for rod coating and screen printing, respectively), which can be further increased using zinc particles or ethanol-based formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Forrest SR (2004) Nature 428:911

    Article  CAS  Google Scholar 

  2. Nishide H, Oyaizu K (2008) Science 319:737

    Article  CAS  Google Scholar 

  3. Li Y, Rida M, Vyas R, Tentzeris MM (2007) Microwave Theory Tech, IEEE Trans 55:2894

    Article  Google Scholar 

  4. Abad E, Zampolli S, Marco S, Scorzoni A, Mazzolai B, Juarros A, Gomez D, Elmi I, Cardinali GC, Gomez JM, Palacio F, Cicioni M, Mondini A, Becker T, Sayhan I (2007) Sens Actuators B 127:2–7

    Article  CAS  Google Scholar 

  5. Chung I-J, Kang I (2009) Mol Cryst Liq Cryst 507:1

    Article  CAS  Google Scholar 

  6. Hilder M, Winther-Jensen B, Clark NB (2009) J Pow Sour 194:1135

    Article  CAS  Google Scholar 

  7. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG, Schubert US (2010) J Mater Chem 20:8446

    Article  CAS  Google Scholar 

  8. Ng SH, Wang J, Guo ZP, Chen J, Wang GX, Liu HK (2005) Electrochim Acta 51:23

    Article  CAS  Google Scholar 

  9. Chen J, Liu Y, Minett AI, Lynam C, Wang J, Wallace GG (2007) Chem Mater 19:3595

    Article  CAS  Google Scholar 

  10. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Nano Lett 9:1872

    Article  CAS  Google Scholar 

  11. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt R, Nalamasu O, Ajayan P (2007) PNAS 104:13574

    Article  CAS  Google Scholar 

  12. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) PNAS 106:21490

    Article  CAS  Google Scholar 

  13. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37:61

    Article  CAS  Google Scholar 

  14. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557

    Article  CAS  Google Scholar 

  15. Chung DDL (2002) J Mater Sci 37. doi:10.1023/A:1014915307738

  16. Liu Y, Treadwell DR, Kannisto MR, Mueller BL, Laine RM (1997) J Am Ceram Soc 80:705

    Article  CAS  Google Scholar 

  17. Park BK, Kim D, Jeong S, Moon J, Kim JS (2007) Thin Solid Films 515:7706

    Article  CAS  Google Scholar 

  18. Lee B, Kim Y, Yang S, Jeong I, Moon J (2009) Curr Appl Phys 9:157

    Article  Google Scholar 

  19. Dearden AL, Smith PJ, Shin D-Y, Reis N, Derby B, O’Brien P (2005) Macromol Rapid Commun 26:315

    Article  CAS  Google Scholar 

  20. Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S (2005) Macromol Rapid Commun 26:281

    Article  CAS  Google Scholar 

  21. Nur HM, Song JH, Evans JRG, Edirisinghe MJ (2002) J Mater Sci 13. doi:10.1023/A:1014827900606

  22. Kang JS, Kim HS, Ryu J,Hahn HT, Jang S, Joung JW (2010) J Mater Sci 21. doi:10.1007/s10854-009-0049-3

  23. Mori k, Okai Y, Yamada H, Kashiwaba Y (1993) J Mater Sci 28. doi:10.1007/BF00357810

  24. Ota T, Fukushima M, Ishigure Y, Unuma H, Talahashi M, Hikichi Y (1997) J Mater Sci Lett 16. doi:10.1007/BF02765404

  25. Xue Q (2004) Eur Polym J 40:323

    Article  CAS  Google Scholar 

  26. Luyt AS, Molefi JA, Krump H (2006) Polym Degrad Stab 91:1629

    Article  CAS  Google Scholar 

  27. Tekce HS, Kumlutas D, Tavman IH (2007) Reinf Plast Compos 26:113

    Article  CAS  Google Scholar 

  28. Pavlovic MM, Cosovic V, Pavlovic MG, Talijan N, Bojanic V (2011) Int J Electrochem Sci 6:3812

    CAS  Google Scholar 

  29. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) J Appl Polym Sci Appl Polym Symp 37:797

    CAS  Google Scholar 

  30. Turbak AF, Snyder FW, Sandberg KR (1983) J Appl Polym Sci: Appl Polym Symp 37:815

    CAS  Google Scholar 

  31. Siró I, Plackett D (2010) Cellulose 17:459

    Article  Google Scholar 

  32. Lu J, Wang T, Drzal LT (2008) Composites A 39:738

    Article  Google Scholar 

  33. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Biomacromolecules 10:2571

    Article  CAS  Google Scholar 

  34. Janardhnan S, Sain M (2006) Bioresources 1:176

    Google Scholar 

  35. Sain M, Oksman k (2006) ACS Symp Ser Cellul Nanocompos 938:2

    Article  CAS  Google Scholar 

  36. Sasso C, Zeno E, Petit-Conil M, Chaussy D, Belgacem MN, Tapin-Lingua S, Beneventi D (2010) Macromol Mater Eng 295:934

    Article  CAS  Google Scholar 

  37. Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) J Mater Chem 20:7344

    Article  CAS  Google Scholar 

  38. Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Biomacromolecules 11:2195

    Article  CAS  Google Scholar 

  39. Liu A, Walther A, Ikkala O, Belova L, Berglung LA (2011) Biomacromolecules 12:633

    Article  CAS  Google Scholar 

  40. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Nano Energy in press

  41. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) J Mater Chem 1:4671

    Article  CAS  Google Scholar 

  42. Guérin D, Chaussy D (2009) Techniques de l’ingénieur. BM 7(411):1

    Google Scholar 

  43. Lux F (1993) J Mater Sci 28. doi:10.1007/BF00357799

  44. Sun QC, Zhang DD, Wadsworth LC (1998) Tappi J 81:177

    Google Scholar 

  45. Milazzo G, Caroli S (1978) Tables of Standard Electrode Potentials. Wiley, New York, p 437

    Google Scholar 

  46. Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Biomacromolecules 9:1579

    Article  CAS  Google Scholar 

  47. Kirkpatrick S (1973) Rev Mod Phys 45:574

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a CIFRE Grant from the French National Association for Research and Technology (ANRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Beneventi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pras, O., Beneventi, D., Chaussy, D. et al. Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. J Mater Sci 48, 6911–6920 (2013). https://doi.org/10.1007/s10853-013-7496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7496-1

Keywords

Navigation