Skip to main content
Log in

Preparation of high thermal conductivity copper–diamond composites using molybdenum carbide-coated diamond particles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molybdenum carbide (Mo2C) coatings on diamond particles were proposed to improve the interfacial bonding between diamond particles and copper. The Mo2C-coated diamond particles were prepared by molten salts method and the copper–diamond composites were obtained by vacuum pressure infiltration of Mo2C-coated diamond particles with pure copper. The structures of the coatings and composites were investigated using X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results indicated that the Mo2C coatings effectively improved the wettability between diamond particles and copper matrix, and Mo2C intermediate layers were proved to decrease the interfacial thermal resistance of composites. The thermal conductivity of the composite reached 608 Wm−1 K−1 with 65 vol.% Mo2C-coated diamond, which was much higher than that with uncoated diamond. The greatly enhanced thermal conductivity is ascribed to the 1-μm-thick Mo2C coatings. Mo2C coatings on diamond particles are proved to be an effective way to enhance the thermal conductivities of copper–diamond composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feng H, Yu JK, Tan W (2010) Mater Chem Phys 124:851. doi:10.1016/j.matchemphys.2010.08.003

    Article  CAS  Google Scholar 

  2. Weber L, Tavangar R (2007) Scr Mater 57:988. doi:10.1016/j.scriptamat.2007.08.007

    Article  CAS  Google Scholar 

  3. Schubert T, Ciupinski L, Zielinski W, Michalski A, Weißgarber T, Kieback B (2008) Scr Mater 58:263. doi:10.1016/j.scriptamat.2007.10.011

    Article  CAS  Google Scholar 

  4. Abyzov AM, Kidalov SV, Shakhov FM (2011) J Mater Sci 46:1424. doi:10.1007/s10853-010-4938-x

    Article  CAS  Google Scholar 

  5. Dong YH, He XB, Xu L, Qu XH (2011) J Mater Sci 46:3862. doi:10.1007/s10853-011-5307-0

    Article  CAS  Google Scholar 

  6. Sinha V, Spowart JE (2012) J Mater Sci. doi:10.1007/s10853-012-6878-0

  7. Fan YM, Guo H, Xu J, Chu K, Zhu XX, Jia CC (2011) Int J Miner 18:472. doi:10.1007/s12613-011-0465-2

    Google Scholar 

  8. Schubert T, Trindade B, Weißgarber T, Kieback B (2008) Mater Sci Eng A 475:39. doi:10.1016/j.msea.2006.12.146

    Article  Google Scholar 

  9. Ren SB, Shen XY, Guo CY, Liu N, Zang JB, He XB, Qu XH (2011) Compos Sci Technol 71:1550. doi:10.1016/j.compscitech.2011.06.012

    Article  CAS  Google Scholar 

  10. Mayerhofer KE, Schrank C, Eisenmenger C, Hutter H (2005) Appl Surf Sci 252:266. doi:10.1016/j.apsusc.2005.02.018

    Article  CAS  Google Scholar 

  11. Schwarz B, Schrank C, Eisenmenger C, Pollach M, Rosner M, Neubauer E (2006) Surf Coat Technol 200:4891. doi:10.1016/j.surfcoat.2005.04.042

    Article  CAS  Google Scholar 

  12. Shao WZ, Ivanov VV, Zhen L, Cui YS, Wang Y (2004) Mater Lett 58:146. doi:10.1016/S0167-577x(03)00433-6

    Article  CAS  Google Scholar 

  13. Chu K, Liu ZF, Jia CC, Chen H, Liang XB, Gao WJ (2010) J Alloys Compd 490:453. doi:10.1016/j.jallcom.2009.10.040

    Article  CAS  Google Scholar 

  14. Rape A, Liu X, Kulkarni A, Singh J (2012) J Mater Sci. doi:10.1007/s10853-012-6868-2

  15. Ekimov EA, Suetin NV, Popovich AF, Ralchenko VG (2008) Diam Relat Mater 17:838. doi:10.1016/j.diamond.2007.12.051

    Article  CAS  Google Scholar 

  16. Balandin AA (2011) Nat Mater 10:569. doi:10.1038/nmat3064

    Article  CAS  Google Scholar 

  17. Shamsa M, Ghosh S, Calizo I, Ralchenko V, Popovich A, Balandin AA (2008) J Appl Phys 103:083538. doi:10.1063/1.2907865

    Article  Google Scholar 

  18. Liu WL, Shamsa M, Calizo I, Balandin AA (2006) Appl Phys Lett 89:171915. doi:10.1063/1.2364130

    Article  Google Scholar 

  19. Yamamoto Y, Imai T, Tanabe K, Tsuno T, Kumazawa Y, Fujimori N (1997) Diam Relat Mater 6:1057. doi:10.1016/S0925-9635(96)00772-8

    Article  CAS  Google Scholar 

  20. Yang ZH, Cai PJ, Shi L, Gu YL, Chen LY, Qian YT (2006) J Solid State Chem 179:29. doi:10.1016/j.jssc.2005.09.037

    Article  CAS  Google Scholar 

  21. Li XK, Dong ZJ, Westwood A, Brown A, Zhang SW, Brydson R (2008) Carbon 46:305. doi:10.1016/j.carbon.2007.11.020

    Article  CAS  Google Scholar 

  22. Zhang Y, Zhang HL, Wu JH, Wang XT (2011) Scr Mater 65:1097. doi:10.1016/j.scriptamat.2011.09.028

    Article  CAS  Google Scholar 

  23. Xia Y, Song YQ, Lin CG, Cui S, Fang ZZ (2009) Trans Nonferr Met Soc 19:1161. doi:10.1016/S1003-6326(08)60422-7

    Article  CAS  Google Scholar 

  24. Hasselman DPH, Lloyd FJ (1987) J Compos Mater 21:508. doi:10.1177/002199838702100602

    Article  Google Scholar 

  25. Swartz ET, Pohl RO (1989) Rev Mod Phys 61:605. doi:10.1103/RevModPhys.61.605

    Article  Google Scholar 

  26. Goyal V, Subrina S, Nika DL, Balandin AA (2010) Appl Phys Lett 97: 031904. doi:10.1063/1.3463455

  27. Yan Z, Liu GX, Khan JM, Balandin AA (2012) Nat Commun 3:827. doi:10.1038/ncomms1828

    Article  Google Scholar 

  28. Yu J, Liu GX, Sumant AV, Goyal V, Balandin AA (2012) Nano Lett 12:1603. doi:10.1021/nl204545q

    Article  CAS  Google Scholar 

  29. Every AG, Tzou Y, Hasselman DPH, Raj R (1992) Acta Metall Mater 40:123. doi:10.1016/0956-7151(92)90205-S

    Article  CAS  Google Scholar 

  30. Hopkins PE, Beechem TE (2010) Nanoscale Microscale Thermophys Eng 14:51. doi:10.1080/15567261003601805

    Article  CAS  Google Scholar 

  31. Prasher RS, Phelan PE (2001) J Heat Transfer 123:105. doi:10.1115/1.1338138

    Article  CAS  Google Scholar 

  32. Hopkins PE, Kassebaum JL, Norris PM (2009 J Appl Phys. doi:10.1063/1.3068476

  33. Majumdar A, Reddy P (2004) Appl Phys Lett 84:4768. doi:10.1063/1.1758301

    Article  CAS  Google Scholar 

  34. Hopkins PE, Norris PM, Stevens RJ, Beechem TE, Graham S (2008) J Heat Transfer. doi:10.1115/1.2897344

Download references

Acknowledgements

This work was financially supported by “the Fundamental Research Funds for the Central Universities (FRF-TP-10-003B)” and “the National Natural Science Foundation of China (Grant No. 51274040).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbo He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Q., He, X., Ren, S. et al. Preparation of high thermal conductivity copper–diamond composites using molybdenum carbide-coated diamond particles. J Mater Sci 48, 6133–6140 (2013). https://doi.org/10.1007/s10853-013-7409-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7409-3

Keywords

Navigation