Skip to main content
Log in

Thermoelectric properties of chromium disilicide prepared by mechanical alloying

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

CrSi and Cr1−x Fe x Si particles embedded in a CrSi2 matrix have been prepared by hot pressing from CrSi1.9, CrSi2, and CrSi2.1 powders produced by ball milling using either WC or stainless steel milling media. The samples were characterized by powder X-ray diffraction, scanning, and transmission electron microscopy and electron microprobe analysis. The final crystallite size of CrSi2 obtained from the XRD patterns is about 40 and 80 nm for SS- and WC-milled powders, respectively, whereas the size of the second phase inclusions in the hot pressed samples is about 1–5 μm. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, and figure of merit (ZT) were analyzed in the temperature range from 300 to 800 K. While the ball-milling process results in a lower electrical resistivity and thermal conductivity due to the presence of the inclusions and the refinement of the matrix microstructure, respectively, the Seebeck coefficient is negatively affected by the formation of the inclusions which leads to a modest improvement of ZT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Filonov AB, Tralle IE, Dorozhkin NN, Migas DB, Shaposhnikov VL, Petrov GV, Anishchik VM, Borisenko VE (1994) Phys Stat Sol B 186:209

    Article  CAS  Google Scholar 

  2. Mattheiss LF (1991) Phys Rev B 43:1863

    Article  CAS  Google Scholar 

  3. Shinoda D, Asanabe S, Sasaki Y (1964) J Phys Soc Jpn 19(3):269

    Article  CAS  Google Scholar 

  4. Nishida I (1972) J Mater Sci 7:1119. doi:10.1007/BF00550193

    Article  CAS  Google Scholar 

  5. Fedorov MI (2009) J Thermoelectr 2:51

    Google Scholar 

  6. Dasgupta T, Umarji AM (2008) J Alloys Compd 461:292

    Article  CAS  Google Scholar 

  7. Dasgupta T, Etourneau J, Chevalier B, Matar SF, Umarji AM (2008) J Appl Phys 103:113516

    Article  Google Scholar 

  8. Ma J, Gu Y, Shi L, Chen L, Yang Z, Oian Y (2004) J Alloys Compd 376:176

    Article  CAS  Google Scholar 

  9. Nishida I, Sakata T (1978) J Phys Chem Solids 39:499

    Article  CAS  Google Scholar 

  10. Perumal S, Gorsse S, Ail U, Decourt R, Umarji AM (2013) J Electron Mater. doi:10.1007/s11664-013-2510-6

    Google Scholar 

  11. Perumal S, Gorsse S, Ail U, Chevalier B, Decourt R, Umarji AM (2013) J Mater Sci 48:227. doi:10.1007/s10853-012-6732-4

    Article  CAS  Google Scholar 

  12. Pan ZJ, Zhang LT, Wu JS (2007) Scripta Mater 56:245

    Article  CAS  Google Scholar 

  13. Pan ZJ, Zhang LT, Wu JS (2007) Scripta Mater 56:257

    Article  CAS  Google Scholar 

  14. Gorsse S, Pereira PB, Decourt R, Sellier E (2010) Chem Mater 22:988

    Article  CAS  Google Scholar 

  15. Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji A, Ail U, Decourt R (2011) Acta Mater 59:7425

    Article  CAS  Google Scholar 

  16. Gorsse S, Chevalier B, Orveillon G (2008) Appl Phys Lett 92:122501

    Article  Google Scholar 

  17. Luo W, Li H, Yan Y, Lin Z, Tang X, Zhang Q, Uher C (2011) Intermetal 19:404

    Article  CAS  Google Scholar 

  18. Ibanez M, Zamani R, Lalonde A, Cadavid D, Li W, Shavel A, Arbiol J, Ramon MJ, Gorsse S, Snyder GJ, Cabot A (2012) J Am Chem Soc 134:4060

    Article  CAS  Google Scholar 

  19. Ibanez M, Cadavid D, Anselmi-Tamburini U, Zamani R, Gorsse S, Li W, Lopez AM, Ramon MJ, Arbiol J, Cabot A (2013) J Mater Chem A 1:1421. doi:10.1039/c2ta00419d

    Article  CAS  Google Scholar 

  20. Cadavid D, Ibanez M, Gorsse S, Lopez AM, Cirera A, Ramon MJ, Arbiol J, Cabot A (2012) J Nanopart Res 14:1328. doi:10.1007/c11051-012-1328-0

    Article  Google Scholar 

  21. Ibanez M, Zamani R, Li W, Cadavid D, Gorsse S, Katcho NA, Shavel A, Lopez AM, Ramon MJ, Arbiol J, Cabot A (2012) Chem Mater 24:4615. doi:10.1021/cm303252q

    Article  CAS  Google Scholar 

  22. Poudel B, Qing Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) Science 320:634

    Article  CAS  Google Scholar 

  23. Zhang DL (1996) J Mater Sci 31:895. doi:10.1007/BF00352887

    Article  CAS  Google Scholar 

  24. Fernandes BB, Rodrigues G, Coelho GC, Ramos AS (2005) J Mater Sci Eng A 405:135

    Article  Google Scholar 

  25. Maxwell JC (1904) A treatise on electricity and magnetism. Clarendon, Oxford

    Google Scholar 

Download references

Acknowledegments

This study was supported by a research grant from the Indo-French Centre for the Promotion of Advanced Research, IFCPAR/CEFIPRA (Program No. 4008-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gorsse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perumal, S., Gorsse, S., Ail, U. et al. Thermoelectric properties of chromium disilicide prepared by mechanical alloying. J Mater Sci 48, 6018–6024 (2013). https://doi.org/10.1007/s10853-013-7398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7398-2

Keywords

Navigation