Skip to main content

Advertisement

Log in

Natural and synthetic iron oxides for hydrogen storage and purification

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the hydrogen storage capacity of some synthetic and natural iron oxides is presented. The results of the activity tests and characterization techniques of natural and synthetic iron oxides (N2 adsorption–desorption isotherms, temperature-programmed reduction, X-ray diffraction, and plasma atomic emission spectroscopy) suggest that the use of chromium on iron oxide systems improved their hydrogen storage capacity. This is related to the capacity of chromium to modify the iron oxide reduction profile when Cr was incorporated. A direct reduction from Fe3O4 to Fe was observed as the mechanism for H2 storage. In addition, natural oxides as commercial Superfine and Densinox-L oxides are proved to be suitable materials to store and purify H2 due to their high stability during different cycles of reduction and oxidation. The best results among the natural ones were Densinox-L and among the synthetic ones Fe–10Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Otsuka K, Kaburagi T, Yamada C, Takenaka S (2003) J Power Sources 122:111

    Article  CAS  Google Scholar 

  2. Lebon A, Garcia-Fuente A, Vega A, Aguilera-Granja F (2012) J Phys Chem 116:126

    CAS  Google Scholar 

  3. Lebon A, Garcia-Fuente A, Vega A, Aguilera-Granja F (2011) Phys Rev B 83:125427

    Article  Google Scholar 

  4. Kobayashi H, Yamauchi M, Kitagawa H (2012) J Am Chem Soc 134:6893

    Article  CAS  Google Scholar 

  5. Kobayashi H, Yamauchi M, Kitagawa H (2011) J Am Chem Soc 133:11034

    Article  CAS  Google Scholar 

  6. Kusada K, Yamauchi M, Kobayashi H, Kubota Y (2010) J Am Chem Soc 132:15896

    Article  CAS  Google Scholar 

  7. Huang ZG, Guo ZP, Calka A, Wexler D, Lukey C, Liu HK (2006) J Alloy Compd 422:299

    Article  CAS  Google Scholar 

  8. Hacker V, Faleschini G, Fuchs H, Fankhauser R, Simader G, Ghaemi M (1998) J Power Sources 71:226

    Article  CAS  Google Scholar 

  9. Hacker V, Faleschini G, Fuchs H, Fankhauser R, Simader G, Ghaemi M (2000) J Power Sources 86:531

    Article  CAS  Google Scholar 

  10. Hacker V (2003) J Power Sources 118:311

    Article  CAS  Google Scholar 

  11. Mignard D, Pritchard C (2007) Int J Hydrogen Energy 32:5039

    Article  CAS  Google Scholar 

  12. David E (2005) J Mater Process Technol 169:162–163

    Google Scholar 

  13. Kock AJHM, Fortuin HM, Geus JW (1985) J Catal 96:261

    Article  CAS  Google Scholar 

  14. www.prodminsa.com

  15. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  16. Lowell S, Shields JE, Thomas MA, Thommes M (2006) Characterization of porous solids and powers: surface area, pore size and density. Springer, Netherlands

    Google Scholar 

  17. De Boer JH (1958) The structure and properties of porous materials. Butterworths, London

    Google Scholar 

  18. Jozwiak WK, Kaczmarek E, Maniecki TP, Ignaczak W, Maniukiewicz W (2007) Appl Catal A 326:17

    Article  CAS  Google Scholar 

  19. Liu X, Shen K, Wang Y, Wang Y, Guo Y, Guo Y et al (2008) Catal Commun 9:2316

    Article  CAS  Google Scholar 

  20. Jimenez-Lopez A, Rodriguez-Castellon E, Maireles-Torres P, Díaz L, Mérida-Robles J (2001) Appl Catal A Gen 218:295

    Article  CAS  Google Scholar 

  21. Batista MS, Assaf EM, Assaf JM, Ticianelli EA (2006) Int J Hydrogen Energy 31:1204

    Article  CAS  Google Scholar 

  22. Popa T, Guoqing X, Barton TF, Argylea MD (2010) Appl Catal A 379:15

    Article  CAS  Google Scholar 

  23. Lorente E, Peña JA, Herguido J (2011) Int J Hydrogen Energy 36:7043

    Article  CAS  Google Scholar 

  24. Lorente E, Peña JA, Herguido J (2009) J Power Sources 192:224

    Article  CAS  Google Scholar 

  25. Sharma T (1994) ISIJ Int 34(12):960

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the Universidad del País Vasco and Basque Regional Government for this work (Saiotek program) and to Tecnalia for its kind collaboration to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Requies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Requies, J., Güemez, M.B., Perez Gil, S. et al. Natural and synthetic iron oxides for hydrogen storage and purification. J Mater Sci 48, 4813–4822 (2013). https://doi.org/10.1007/s10853-013-7377-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7377-7

Keywords

Navigation