Skip to main content
Log in

Achieving homogeneity in a two-phase Cu–Ag composite during high-pressure torsion

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A Cu–8 wt%Ag alloy was processed at room temperature either by high-pressure torsion (HPT) or using a two-step deformation mode of equal-channel angular pressing (ECAP) and HPT. After HPT deformation, different flow patterns were observed on the disk surface without any post-deformation treatment thereby indicating an inhomogeneous shearing deformation. The microhardness distributions throughout the disks were compared after the two different processing routes. It is shown that the microhardness remains very low near the center of the disk although saturated in the outer regions after 10 revolutions. By contrast, an intrinsically homogeneous microhardness may be attained throughout the disk after the two-step deformation of ECAP and HPT. This study suggests a convenient procedure for achieving full homogeneity in high-strength materials during HPT processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hall EO (1951) Proc Phys Soc Ser B 64:747

    Article  Google Scholar 

  2. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  3. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  4. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  5. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  6. Tao N, Lu K (2007) J Mater Sci Technol 23:771

    Article  CAS  Google Scholar 

  7. Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  CAS  Google Scholar 

  8. Hebesberger T, Stüwe HP, Vorhauer A, Wetscher F, Pippan R (2005) Acta Mater 53:393

    Article  CAS  Google Scholar 

  9. Ito Y, Horita Z (2009) Mater Sci Eng A 503:32

    Article  Google Scholar 

  10. Ni S, Wang YB, Liao XZ, Alhajeri SN, Li HQ, Zhao YH, Lavernia EG, Ringer SP, Langdon TG, Zhu YT (2011) Scr Mater 64:327

    Article  CAS  Google Scholar 

  11. Zhang P, An XH, Zhang ZJ, Wu SD, Li SX, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2012) Scr Mater 67:871

    Article  CAS  Google Scholar 

  12. Tian YZ, Li JJ, Zhang P, Wu SD, Zhang ZF, Kawasaki M, Langdon TG (2012) Acta Mater 60:269

    Article  CAS  Google Scholar 

  13. Quelennec X, Menand A, Le Breton JM, Pippan R, Sauvage X (2010) Philos Mag 90:1179

    Article  CAS  Google Scholar 

  14. Valiev RZ, Ivanisenko YV, Rauch EF, Baudelet B (1996) Acta Mater 44:4705

    Article  CAS  Google Scholar 

  15. Wetscher F, Vorhauer A, Stock R, Pippan R (2004) Mater Sci Eng A 387–389:809

    Google Scholar 

  16. Estrin Y, Molotnikov A, Davies CHJ, Lapovok R (2008) J Mech Phys Solid 56:1186

    Article  CAS  Google Scholar 

  17. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  18. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scr Mater 63:560

    Article  CAS  Google Scholar 

  19. Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A 528:7715

    Article  CAS  Google Scholar 

  20. Edalati K, Yamamoto A, Horita Z, Ishihara T (2011) Scr Mater 64:880

    Article  CAS  Google Scholar 

  21. Kawasaki M, Figueiredo RB, Langdon TG (2011) Acta Mater 59:308

    Article  CAS  Google Scholar 

  22. Loucif A, Figueiredo RB, Baudin T, Brisset F, Chemam R, Langdon TG (2012) Mater Sci Eng A 532:139

    Article  CAS  Google Scholar 

  23. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7782. doi:10.1007/s10853-012-6587-8

    Article  CAS  Google Scholar 

  24. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7789. doi:10.1007/s10853-012-6524-x

    Article  CAS  Google Scholar 

  25. Vorhauer A, Pippan R (2004) Scr Mater 51:921

    Article  CAS  Google Scholar 

  26. Tian YZ, An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Scr Mater 63:65

    Article  CAS  Google Scholar 

  27. Bayramoglu S, Gür CH, Alexandrov IV, Abramova MM (2010) Mater Sci Eng A 527:927

    Article  Google Scholar 

  28. Wei Q, Pan ZL, Wu XL, Schuster BE, Kecskes LJ, Valiev RZ (2011) Acta Mater 59:2423

    Article  CAS  Google Scholar 

  29. Tian YZ, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Acta Mater 59:2783

    Article  CAS  Google Scholar 

  30. Tian YZ, Freudenberger J, Pippan R, Zhang ZF (2012) Mater Sci Eng A. doi:10.1016/j.msea.2012.11.048

  31. Harai Y, Ito Y, Horita Z (2008) Scr Mater 58:469

    Article  CAS  Google Scholar 

  32. Todaka Y, Umemoto M, Yamazaki A, Sasaki J, Tsuchiya K (2008) Mater Trans 49:47

    Article  CAS  Google Scholar 

  33. Tian YZ, Duan QQ, Yang HJ, Zou HF, Yang G, Wu SD, Zhang ZF (2010) Metall Mater Trans A 41:2290

    Article  Google Scholar 

  34. Iwahashi Y, Wang JT, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  35. Tian YZ, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Mater Sci Eng A 528:4331

    Article  Google Scholar 

  36. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328

    Article  Google Scholar 

  37. Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A 332:97

    Article  Google Scholar 

  38. Kawasaki M, Langdon TG (2008) Mater Sci Eng A 498:341

    Article  Google Scholar 

  39. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A 528:8198

    Article  CAS  Google Scholar 

  40. Edalati K, Horita Z, Langdon TG (2009) Scr Mater 60:9

    Article  CAS  Google Scholar 

  41. Cao Y, Kawasaki M, Wang YB, Alhajeri SN, Liao XZ, Zheng WL, Ringer SP, Zhu YT, Langdon TG (2010) J Mater Sci 45:4545. doi:10.1007/s10853-010-4485-5

    Article  CAS  Google Scholar 

  42. Cao Y, Wang YB, Figueiredo RB, Chang L, Liao XZ, Kawasaki M, Zheng WL, Ringer SP, Langdon TG, Zhu YT (2011) Acta Mater 59:3903

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant Nos. 50625103, 50890173, and 50931005, in part by the National Basic Research Program of China under Grant No. 2010CB631006, in part by the Royal Society of the U.K. under International Joint Project No. JP871294 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y.Z., Zhang, Z.F. & Langdon, T.G. Achieving homogeneity in a two-phase Cu–Ag composite during high-pressure torsion. J Mater Sci 48, 4606–4612 (2013). https://doi.org/10.1007/s10853-012-7105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7105-8

Keywords

Navigation