Skip to main content

Advertisement

Log in

Infrared and microwave shielding of transparent Al-doped ZnO superlattice grown via atomic layer deposition

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The system of atomic-layer Al-doped ZnO (AZO) superlattice is rather interesting in that it exhibits a “bipolar transparency,” as it is transparent in the visible and opaque in the infrared to microwave. Here, we report on our measurements of the infrared and microwave shielding properties of thin films (~150 nm) of an Al-doped ZnO superlattice grown via atomic layer deposition (ALD). These optically transparent conductive oxide thin films have large DC electrical conductivity (>50,000 S/m) which increases with Al doping. Their infrared optical properties are well described by a free-electron (Drude) model, which results from the very large carrier concentrations (>3 × 1020 cm−3) resulting from AlO x -heterolayer-doping. It is found that increasing Al concentrations lead to an increase in the relaxation energy which, however, is not strong enough to cause the plasma frequency to red-shift. Microwave shielding properties were investigated in the frequency range from 1 to 30 GHz, and shielding efficiencies as high as ~22 dB were observed, confirming that the free-electron picture extends into the microwave regime. The dynamic conductivity in the microwave range was found to correspond well to the measured DC values. Due to their high electrical conductivity and high microwave shielding efficiency in thin film format, these materials may be desirable for applications in transparent electronics, optically transparent EMI shielding coatings, and heat/microwave reflecting coatings for windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hosono H, Paine DC, Ginley DS (2010) Handbook of transparent conductors, vol 1. Springer, Berlin

    Google Scholar 

  2. Hamberg I, Granqvist CG (1986) J Appl Phys 60(11):R123

    Article  CAS  Google Scholar 

  3. Lee DJ, Kim HM, Kwon JY, Choi H, Kim SH, Kim KB (2011) Adv Funct Mater 21(3):448. doi:10.1002/adfm.201001342

    Article  CAS  Google Scholar 

  4. Lee DJ, Kwon JY, Kim SH, Kim HM, Kim KB (2011) J Electrochem Soc 158(5):D277. doi:10.1149/1.3568881

    Article  CAS  Google Scholar 

  5. Smits FM (1958) Bell Syst Tech J 34:711

    Google Scholar 

  6. Kitano H, Ohashi T, Maeda A (2008) Rev Sci Instrum 79(7):074701. doi:10.1063/1.2954957

    Article  Google Scholar 

  7. Booth JC, Wu DH, Anlage SM (1994) Rev Sci Instrum 65(6):2082

    Article  CAS  Google Scholar 

  8. Martens HCF, Reedijk JA, Brom HB (2000) Rev Sci Instrum 71(2):473

    Article  CAS  Google Scholar 

  9. Xu H, Anlage SM, Hu LB, Gruner G (2007) Appl Phys Lett 90(18):183119. doi:10.1063/1.2734897

    Article  Google Scholar 

  10. Dressel M, Grüner G (2002) Electrodynamics of solids: optical properties of electrons in matter. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Stuchly MA, Stuchly SS (1980) IEEE Trans Instrum Meas 29(3):176

    Article  Google Scholar 

  12. Kilbride BE, Coleman JN, Fraysse J, Fournet P, Cadek M, Drury A, Hutzler S, Roth S, Blau WJ (2002) J Appl Phys 92(7):4024. doi:10.1063/1.1506397

    Article  CAS  Google Scholar 

  13. Dutta P, Biswas S, Ghosh M, De SK, Chatterjee S (2001) Synth Met 122(2):455

    Article  CAS  Google Scholar 

  14. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. International series of monographs on physics, 2nd edn. Oxford University Press, Oxford

  15. Hawthorne EI (1954) Proc IRE 42(3):548

    Article  Google Scholar 

  16. Lasitter HA (1964) IEEE Trans Electromagn Compat Emc6(2):17

    Article  Google Scholar 

  17. Asbalter J, Karunakaran S, Subrahmanyam A (1999) Proceedings of international conference on electromagnetic interference and compatibility, vol 366

  18. Huang JL, Yau BS, Chen CY, Lo WT, Lii DF (2001) Ceram Int 27(3):363

    Article  CAS  Google Scholar 

  19. Sarto F, Sarto MS, Laciprete MC, Sibila C (2003) Rev Adv Mater Sci 5(1):329

    CAS  Google Scholar 

  20. Kim WM, Ku DY, Lee IK, Seo YW, Cheong BK, Lee TS, Kim IH, Lee KS (2005) Thin Solid Films 473(2):315. doi:10.1016/j.tsf.2004.08.083

    Article  CAS  Google Scholar 

  21. Greco S, Sarto MS, Tamburrano A (2008) International symposium on electromagnetic compatibility—EMC Europe, 8–12 September 2008, pp 1–6. doi:10.1109/emceurope.2008.4786870

  22. Yamada T, Morizane T, Arimitsu T, Miyake A, Makino H, Yamamoto N, Yamamoto T (2008) Thin Solid Films 517(3):1027. doi:10.1016/j.tsf.2008.06.047

    Article  CAS  Google Scholar 

  23. Rubinger CPL, da Cunha AF, Vinagre F, Ribeiro GM, Costa LC (2009) J Appl Phys 105(7):074502. doi:10.1063/1.3093690

    Article  Google Scholar 

  24. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  25. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation interference and diffraction of light 7th expanded edn. Cambridge University Press, Cambridge

    Google Scholar 

  26. Jagadish C, Pearton SJ (2006) Zinc oxide bulk, thin films and nanostructures: processing, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  27. Rhodes CL, Lappi S, Fischer D, Sambasivan S, Genzer J, Franzen S (2008) Langmuir 24(2):433. doi:10.1021/La701741m

    Article  CAS  Google Scholar 

  28. Qiao ZH, Agashe C, Mergel D (2006) Thin Solid Films 496(2):520. doi:10.1016/j.tsf.2005.08.282

    Article  CAS  Google Scholar 

  29. Ali HM, Abd El-Raheem MM, Megahed NM, Mohamed HA (2006) J Phys Chem Solids 67(8):1823. doi:10.1016/j.jpcs.2006.04.005

    Article  CAS  Google Scholar 

  30. Volintiru I, Creatore M, van de Sanden MCM (2008) J Appl Phys 103(3):033704. doi:10.1063/1.2837109

    Article  Google Scholar 

  31. Wolfram S (1996) The mathematica book, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

This research was made possible by funding from AFOSR, AOARD, and the WCU Hybrid Materials Program of Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo E. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, G.E., Lee, DJ., Kim, J.H. et al. Infrared and microwave shielding of transparent Al-doped ZnO superlattice grown via atomic layer deposition. J Mater Sci 48, 2536–2542 (2013). https://doi.org/10.1007/s10853-012-7043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7043-5

Keywords

Navigation