Skip to main content
Log in

The effect of encapsulation in carbon nanotubes on properties of Fe–Ni nanoalloys with cubic and helical structures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of encapsulation in carbon nanotubes on Fe–Ni nanoparticles (NPs), NP assemblies and nanowires (NWs) is studied by means of atomistic simulations with empirical potentials. The BCC Fe, L10, FeNi, L12 FeNi3 and FCC Ni stable phases of the bulk alloy are retrieved for both the freestanding (FS) and the encapsulated nanoalloys. As it requires large morphological changes, the BCC/L10 transition may be inhibited by the confinement in a nanotube. The results indicate that encapsulation has the effect to enhance Fe segregation at compositions intermediate between stable phases. When the nanotube is too narrow, encapsulated NWs do not support a cubic structure. They consist in coaxial layers with a central straight atomic row aligning with the tube axis. Each layer displays a helical structure which can be equivalently viewed as a folded atomic plane with low Miller indices. Such ultrathin helical Fe–Ni NWs, FS as well as encapsulated, behave as almost ideal solid solutions over the whole range of compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108:845

    Article  CAS  Google Scholar 

  2. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  3. Dresselhaus MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin

    Google Scholar 

  4. Grobert N, Hsu WK, Zhu YQ, Hare JP, Kroto HW, Walton DRM, Terrones M, Terrones H, Redlich Ph, Rühle M, Escudero R, Morales F (1999) Appl Phys Lett 75:3363

    Article  CAS  Google Scholar 

  5. Leonhardt A, Ritschel A, Kozhuharova R, Graff A, Mühl T, Huhle R, Mönch I, Elefant D, Schneider CM (2003) Diam Relat Mater 12:790

    Article  CAS  Google Scholar 

  6. Grobert N, Terrones M, Osborne AJ, Terrones H, Hsu WK, Trasobares S, Zhu YQ, Hare JP, Kroto HW, Walton DRM (1998) Appl Phys A 67:595

    Article  CAS  Google Scholar 

  7. Setlur AA, Lauerhaas JM, Dai JY, Chang RPH (1996) Appl Phys Lett 69:345

    Article  CAS  Google Scholar 

  8. Loiseau A, Pascard H (1996) Chem Phys Lett 256:246

    Article  CAS  Google Scholar 

  9. Koi N, Oku T, Nishijima M (2005) Solid State Commun 136:342

    Article  CAS  Google Scholar 

  10. Hayashi Y, Fujita T, Tokunaga T, Kaneko K, Butler T, Rupesinghe N, Carey JD, Silva SRP, Amaratunga GAJ (2007) Diam Relat Mater 16:1200

    Article  CAS  Google Scholar 

  11. Lv R, Cao A, Kang F, Wang W, Wei J, Gu J, Wang K, Wu D (2007) J Phys Chem C 111:11475

    Article  CAS  Google Scholar 

  12. Gautam UK, Costa PMFJ, Bando Y, Fang X, Li L, Imura M, Golberg D (2010) Sci Technol Adv Mater 11:054501

    Article  Google Scholar 

  13. Banhart F (2009) Nanoscale 1:201

    Article  CAS  Google Scholar 

  14. Andreazza P, Mottet C, Andreazza-Vignolle C, Penuelas J, Tolentino HCN, De Santis M, Felici R, Bouet N (2010) Phys Rev B 82:155453

    Article  Google Scholar 

  15. Zewall AH (2010) Science 328:187

    Article  Google Scholar 

  16. Tran D, Jones IP, Preece JA, Johnston RL, Deplanche K, Macaskie LE (2012) Nanotechnology 23:055701

    Article  CAS  Google Scholar 

  17. Ayala P, Kitaura R, Kramberger C, Shiozawa H, Imazu N, Kobayashi K, Mowbray DJ, Hoffmann P, Shinohara H, Pichler T (2011) Mater Express 1:30

    Article  CAS  Google Scholar 

  18. Sutter E, Sutter P (2006) Adv Mater 18:2583

    Article  CAS  Google Scholar 

  19. Soldano C, Rossella F, Bellani V, Giudicatti S, Kar S (2010) ACS Nano 4:6573

    Article  CAS  Google Scholar 

  20. Qin DH, Wang CW, Sun QY, Li HL (2002) Appl Phys A 74:761

    Article  CAS  Google Scholar 

  21. Konabe S (2011) Appl Phys Lett 98:073109

    Article  Google Scholar 

  22. Cheng D, Atanasov IS, Hou M (2011) Eur Phys J D64:37

    Google Scholar 

  23. Zhu B, Wang Y, Atanasov IS, Cheng D, Hou M (2012) J Phys D 45:165302

    Article  Google Scholar 

  24. Wackerie T (2010) IEEE Trans Magn 46:326

    Article  Google Scholar 

  25. Byshkin M, Hou M (2012) J Mater Sci 47:5784. doi:10.1007/s10853-012-6475-2

    Article  CAS  Google Scholar 

  26. Rohart S, Raufast C, Favre L, Bernstein E, Bonet E, Dupuis V (2006) Phys Rev Lett 74:104408

    Google Scholar 

  27. Moskovkin P, Pisov S, Hou M, Raufast C, Tournus F, Favre L, Dupuis V (2007) Eur Phys J D 43:27

    Article  CAS  Google Scholar 

  28. Rossi G, Ferrando R, Mottet C (2008) Faraday Discuss 138:193

    Article  CAS  Google Scholar 

  29. Zhu B, Wang Y, Pan Z, Cheng D, Hou M (2010) Eur Phys J D 57:219

    Article  CAS  Google Scholar 

  30. Brenner DW (1990) Phys Rev B 42:9458

    Article  CAS  Google Scholar 

  31. Mendelev MI, Han A, Srolovitz DJ, Ackland GJ, Sun DY, Asta M (2003) Phil Mag A83:3977

    Article  Google Scholar 

  32. Voter AF, Chen SP (1987) Mater Res Soc Symp Proc 82:175

    Article  CAS  Google Scholar 

  33. Bonny G, Pasianot RC, Malerba L (2009) Phil Mag 89:3451

    Article  CAS  Google Scholar 

  34. Bonny G, Pasianot RC, Malerba L (2009) Model Simul Mater Sci Eng 17:025010

    Article  Google Scholar 

  35. Chan KT, Neaton JB, Cohen ML (2008) Phys Rev B 77:235430

    Article  Google Scholar 

  36. Boukhvalov DW (2011) Phys Status Solidi B 248:1347

    Article  CAS  Google Scholar 

  37. Huang S-P, Mainardi DS, Balbuena PB (2003) Surf Sci 545:163

    Article  CAS  Google Scholar 

  38. Cheng D, Barcaro G, Charlier J-C, Hou M, Fortunelli A (2011) J Phys Chem C 115:10537

    Article  CAS  Google Scholar 

  39. Zhurkin EE, Hou M (2000) J Phys: Condens Matter 12:6735

    Article  CAS  Google Scholar 

  40. Cowley JM (1950) Phys Rev 77:669

    Article  CAS  Google Scholar 

  41. Atanasov IS, Hou M (2009) Surf Sci 603:2639

    Article  CAS  Google Scholar 

  42. Pascard H (1997) In: Joachim G, Roth S (eds) Atomic and molecular wires. Kluwer, Dordrecht, pp 99–108

    Chapter  Google Scholar 

  43. Kondo Y, Takayanagi K (2000) Science 289:606

    Article  CAS  Google Scholar 

  44. Tosatti E (2001) Science 291:288

    Article  CAS  Google Scholar 

  45. Zhu B, Wang Y, Atanasov IS, Cheng D, Hou M (2012) J Phys D Appl Phys 47:5784

    Google Scholar 

  46. Zhu B, Pan ZY, Wang Y, Xiao Y (2008) Nanotechnology 19:495708

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to D. W. Boukhvalov for providing detailed numerical data related to Ref. [36]. This work is part of the European COST action MP0903 on nanoalloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byshkin, M., Zhu, B. & Hou, M. The effect of encapsulation in carbon nanotubes on properties of Fe–Ni nanoalloys with cubic and helical structures. J Mater Sci 48, 866–875 (2013). https://doi.org/10.1007/s10853-012-6808-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6808-1

Keywords

Navigation