Skip to main content
Log in

Strain distribution during tensile deformation of nanostructured aluminum samples

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To optimize the mechanical properties, especially formability, post-process deformation by cold rolling in the range 5–50 % reduction was applied to aluminum sheets produced by accumulative roll bonding to an equivalent strain of 4.8. During tensile testing high resolution maps of the strain distribution over the tensile sample gage length were obtained in situ using a commercial ARAMIS system. Significant improvements in total elongation from 6 to 13.3 % and in post-UTS uniform elongation from zero to 4.4 % were observed when introducing a post-process deformation step and the observations were underpinned by the in situ observations of the evolution of strain distribution in the sample during tensile straining. The mechanisms responsible for the enhancement were discussed based on strain rate sensitivity measurements and microstructural observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427

    Article  CAS  Google Scholar 

  2. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG (2006) Appl Phys Lett 89:12106

    Article  Google Scholar 

  3. Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893

    Article  CAS  Google Scholar 

  4. Kamikawa N, Huang X, Tsuji N, Hansen N (2009) Acta Mater 57:4198

    Article  CAS  Google Scholar 

  5. Yu C, Kao P, Chang C (2005) Acta Mater 53:4019

    Article  CAS  Google Scholar 

  6. Huang X, Hansen N, Tsuji N (2006) Science 312:249

    Article  CAS  Google Scholar 

  7. Huang X, Kamikawa N, Hansen N (2008) J Mater Sci 43:7397. doi:10.1007/s10853-008-2873-x

    Article  CAS  Google Scholar 

  8. Huang X, Kamikawa N, Hansen N (2010) J Mater Sci 45:4761. doi:10.1007/s10853-010-4521-5

    Article  CAS  Google Scholar 

  9. Tsuji N, Saito Y, Lee SH, Minamino Y (2003) Adv Eng Mater 5:338

    Article  CAS  Google Scholar 

  10. Hoffmann H, Hong S (2006) CIRP Ann Manuf Technol 55:263

    Article  Google Scholar 

  11. Hoffmann H, Vogl C (2003) CIRP Ann Manuf Technol 52:217

    Article  Google Scholar 

  12. Hogström P, Ringsberg J, Johnson E (2009) Int J Impact Eng 36:1194

    Article  Google Scholar 

  13. Ehlers S, Varsta P (2009) Thin-Walled Struct 47:1203

    Article  Google Scholar 

  14. Winther G, Huang X, Godfrey A, Hansen N (2004) Acta Mater 52:4437

    Article  CAS  Google Scholar 

  15. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  16. Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 53:3789

    Article  Google Scholar 

  17. Höppel H, Staud D, Merklein M, Geiger M, Göken M (2008) Adv Eng Mater 10:1101

    Article  Google Scholar 

  18. Hyoung-Wook K, Suk-Bong K, Nobuhiro T, Yoritoshi M (2005) Acta Mater 53:1737

    Article  Google Scholar 

  19. Wei Q (2007) J Mater Sci 42:1709. doi:10.1007/s10853-006-0700-9

    Article  CAS  Google Scholar 

  20. Kidmose J, Cai DY, Hansen N, Winther G, Huang X (2010) In: Risø international symposium 31:297–302

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Danish National Research Foundation and the National Natural Science Foundation of China (Grant No. 50911130230) for the Danish-Chinese Center for Nanometals within which this work was performed. JK and LL gratefully acknowledge Yang Le and Jinglong Wen for their technical help with the ARAMIS experiments at Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kidmose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (AVI 3132 kb)

Supplementary material 2 (AVI 6344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kidmose, J., Lu, L., Winther, G. et al. Strain distribution during tensile deformation of nanostructured aluminum samples. J Mater Sci 47, 7901–7907 (2012). https://doi.org/10.1007/s10853-012-6718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6718-2

Keywords

Navigation