Skip to main content
Log in

Anticorrosion behavior of ultrafine-grained Al-26 wt% Si alloy fabricated by ECAP

  • Ultrafine Grained Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ultrafine-grained (UFG) Al-26 wt% Si alloy was obtained through multipass equal-channel angular pressing (EACP) procedure and subsequently tested in 3.5 wt% NaCl solution for the evaluation of electrochemical corrosion. The results show that the ECAPed alloy with increased number of pressing passes obtain lower mass-loss ratios, nobler E corr and E pit, lower I corr values, and higher anode polarization. The improved corrosion resistance of the ECAPed alloy results from the homogeneous UFG structure with the breakage of brittle large primary silicon crystals, which contributes to a higher pitting resistance. The oxidation product with improved adhesion force and protection efficacy can be formed with greater ease on UFG alloys. It implies that grain refinement through severe-plastic-deformation can enhance anticorrosion behavior of hypereutectic Al–Si alloys, besides the well-known strengthening and toughening effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hwang B, Lee S, Kim YC et al (2006) Mater Sci Eng A 441(1–2):308

    Google Scholar 

  2. Jiang JF, Luo SJ (2007) Trans Nonferrous Met Soc China 16(6):1313

    Article  Google Scholar 

  3. Sitdikov O, Sakai T, Avtokratova E et al (2007) Mater Sci Eng A 444(1–2):18

    Google Scholar 

  4. Vinogradov A, Patlan V, Suzuki Y et al (2002) Acta Mater 50(7):1639

    Article  CAS  Google Scholar 

  5. Vinogradov A, Hashimoto S, Kopylov VI (2003) Mater Sci Eng A 355(1–2):277

    Google Scholar 

  6. Stolyarov VV, Zhu YT, Alexandrov IV et al (2003) Mater Sci Eng A 343(1–2):43

    Google Scholar 

  7. Stolyarov VV, Gunderov DV, Popov AG et al (2002) J Magn Magn Mater 242–245:1399

    Article  Google Scholar 

  8. Kawasaki M, Sklenička V, Langdon TG (2010) J Mater Sci 45(1):271. doi:10.1007/s10853-009-3975-9

    Article  CAS  Google Scholar 

  9. Kim WJ, Hyun CY, Kim HK (2006) Scr Mater 54:1745

    Article  CAS  Google Scholar 

  10. Lee S (2008) J Mater Process Technol 201(1–3):441

    Article  CAS  Google Scholar 

  11. Yamasaki T, Miyamoto H, Mimaki T et al (2001) Mater Sci Eng A 318:122

    Article  Google Scholar 

  12. Vinogradov A, Mimaki T, Hashimoto S et al (1999) Scr Mater 41:319

    Article  CAS  Google Scholar 

  13. Balyanov A, Kutnyakova J, Amirkhanova NA et al (2004) Scr Mater 51(3):225

    Article  CAS  Google Scholar 

  14. Chung MK, Choi YS, Kim JG et al (2004) Mater Sci Eng A 366(2):282

    Article  Google Scholar 

  15. Zeiger W, Schneider M, Scharnweber D et al (1995) Nanostruct Mater 6:1013

    Article  Google Scholar 

  16. Chen ZH, Kang ZT (2000) J Central South Univ Technol 7(3):133

    Article  CAS  Google Scholar 

  17. Shibata S, Tomita S, Nakata K (2000) J Japan Inst Light Met 50:609

    Article  CAS  Google Scholar 

  18. Bendijk A, Delhez R, Katgerman L et al (1980) J Mater Sci 15(11):2803. doi:10.1007/BF00550549

    Article  CAS  Google Scholar 

  19. Ma AB, Suzuki K, Saito N et al (2005) Mater Sci Eng A 399:181

    Article  Google Scholar 

  20. Zhao YH, Liao XZ, Jin Z et al (2004) Acta Mater 52(15):4589

    Article  CAS  Google Scholar 

  21. Kim JK, Kim HK, Park JW et al (2005) Scr Mater 53(10):1207

    Article  CAS  Google Scholar 

  22. Jiang JH, Ma AB, Lu FM et al (2011) Mater Corros 62(9):848

    Article  CAS  Google Scholar 

  23. Narayanan LA, Samuel FH, Gruzleski JE (1994) Metall Mater Trans A 25:1761

    Article  Google Scholar 

  24. Cui C, Schulz A, Epp J et al (2010) J Mater Sci 45(10):2798. doi:10.1007/s10853-010-4269-y

    Article  CAS  Google Scholar 

  25. Stolyarov VV, Zhu YT, Alexandrov IV et al (2001) Mater Sci Eng A 299(1–2):59

    Google Scholar 

  26. Stupnišek-Lisac E, Podbršček S, Sorić T (1994) J Appl Electrochem 24:779

    Article  Google Scholar 

  27. Amin MA (2009) Electrochim Acta 54(6):1857

    Article  CAS  Google Scholar 

  28. Foley RT (1986) Corrosion 42(5):277

    Article  CAS  Google Scholar 

  29. Seri O, Furumata K (2006) Mater Corros 51:111

    Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant No. 51141002) and the Fundamental Research Funds for the Central Universities (Hohai University No. 2009B15314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinghua Jiang or Aibin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, J., Ma, A., Song, D. et al. Anticorrosion behavior of ultrafine-grained Al-26 wt% Si alloy fabricated by ECAP. J Mater Sci 47, 7744–7750 (2012). https://doi.org/10.1007/s10853-012-6703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6703-9

Keywords

Navigation