Skip to main content
Log in

Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene oxide was prepared by the Hummers’ method and then functionalized with 4-substituted benzoic acid via “direct Friedel–Crafts” acylation in a mild reaction medium of polyphosphoric acid/phosphorous pentoxide (P2O5). Raman spectroscopy, differential scanning calorimetry, thermo-gravimetric analysis, and transmission electron microscopy were used to characterize the resultant structure. The results show that 4-substituted benzoic acid functionalized graphene (FG) sheets were achieved without pretreatment of oxidation. Polycaprolactam (PA6)-FG composites were prepared by in situ polymerization of ε-caprolactam in the presence of FG. Nanocomposite fiber with 0.01–0.5 wt% content of FG was prepared with a piston spinning machine and hot-roller drawing machine. A significant enhancement of mechanical properties of the PA6-FG composites’ fiber is obtained at low graphene loading; that is, a 29 % improvement of tensile strength and a three times increase of Young’s modulus are achieved at a graphene loading of only 0.1 wt%. The “graft-from” methodologies pave the way to prepare graphene-based nanocomposites of condensation polymers with promising performance and functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  2. Lee C, Wei X, Kysar JW (2008) Science 321:385

    Article  CAS  Google Scholar 

  3. Du X, Skachko I, Barker A (2008) Nat Nanotechnol 3:491

    Article  CAS  Google Scholar 

  4. Rourke Jonathan P, Pandey Priyanka A, Moore Joseph J et al (2011) Angew Chem Int Ed 50:3173

    Article  CAS  Google Scholar 

  5. Balandin AA, Ghosh S, Bao W (2008) Nano Lett 8:90

    Article  Google Scholar 

  6. Bunch JS, Verbridge SS, Alden JS (2008) Nano Lett 8:2458

    Article  CAS  Google Scholar 

  7. Barkauskas J, Daksevic J, Juskenas R (2012) J Mater Sci 47:5852. doi:10.1007/s10853-012-6485-0

    Article  CAS  Google Scholar 

  8. Wilson Neil R, Pandey Priyanka A, Beanland R et al (2009) ACS Nano 3:2547

    Article  CAS  Google Scholar 

  9. Miller SG, Bauer JL, Maryanski MJ (2010) Compos Sci Technol 70:1120

    Article  CAS  Google Scholar 

  10. Lee YR, Raghu AV, Jeong HM (2009) Macromol Chem Phys 210:1247

    Article  CAS  Google Scholar 

  11. Bernal MM, Molenberg I, Estravis S et al (2012) J Mater Sci. doi:10.1007/s10853-012-6331-4

    Google Scholar 

  12. Nguyen DA, Lee YR, Raghu AV (2009) Polym Int 58:412

    Article  CAS  Google Scholar 

  13. Raghu AV, Lee YR, Jeong HM et al (2008) Macromol Chem Phys 209:2487

    Article  CAS  Google Scholar 

  14. Fang M, Wang KG, Lu HB, Yang YL, Nutt S (2009) J Mater Chem 19:7098

    Article  CAS  Google Scholar 

  15. Goncalves G, Marques PAAP, Barros-Timmons A et al (2010) J Mater Chem 20:9927

    Article  CAS  Google Scholar 

  16. Pramoda KP, Hussain H, Koh HM, Tan HR, He CB (2010) J Polym Sci Part A Polym Chem 48:4262

    Article  CAS  Google Scholar 

  17. Layek RK, Samanta S, Chatterjee DP, Nandi AK (2010) Polymer 51:5846

    Article  CAS  Google Scholar 

  18. Bansal A, Yang H, Li C, Benicewicz BC, Kumar SK, Schadler LS (2006) J Polym Sci Part B Polym Phys 44:2944

    Article  CAS  Google Scholar 

  19. Crespy O, Landfester K (2005) Macromolecules 38:6882

    Article  CAS  Google Scholar 

  20. Gao J, Zhao B, Itkis ME et al (2006) J Am Chem Soc 128:7492

    Article  CAS  Google Scholar 

  21. Qu L, Veca LM, Lin Y et al (2005) Macromolecules 38:10328

    Article  CAS  Google Scholar 

  22. Zheng D, Tang GS, Zhang HB et al (2012) Compos Sci Technol 72:284

    Article  CAS  Google Scholar 

  23. Zhang LY, Chen GH (2011) Mater Rev 25:85

    Google Scholar 

  24. Xu Z, Gao C (2010) Macromolecules 43:6716

    Article  CAS  Google Scholar 

  25. Zhang WD, Shen L, Phang IY, Liu TX (2004) Macromolecules 37:256

    Article  CAS  Google Scholar 

  26. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Chem Phys Lett 330:219

    Article  CAS  Google Scholar 

  27. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  28. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA et al (1999) Chem Mater 11:771

    Article  CAS  Google Scholar 

  29. Saeed K, Park SY, Haider S et al (2009) Nanoscale Res Lett 4:39

    Article  CAS  Google Scholar 

  30. Jeong JY, Lee HJ, Kang SW et al (2008) J Polym Sci Part A Polym Chem 46:6041

    Article  CAS  Google Scholar 

  31. Shen JF, Hu YZ, Qin C et al (2008) Langmuir 24:3993

    Article  CAS  Google Scholar 

  32. Chieu TC, Dresselhaus MS (1982) Phys Rev B Condens Matter 26:5867

    Article  CAS  Google Scholar 

  33. Gao W, Alemany LB, Ci L, Ajayan PM (2009) Nat Chem 1:403

    Article  CAS  Google Scholar 

  34. Kong H, Gao C, Yan D (2004) J Am Chem Soc 126:412

    Article  CAS  Google Scholar 

  35. Meng QJ, Wang ZM, Zhang XX et al (2010) High Perform Polym 22:848

    Article  CAS  Google Scholar 

  36. O′Connor I, Hayden H, O′Connor S et al (2009) J Phys Chem C 113:20184

    Article  Google Scholar 

  37. Kim KH, Jo WH (2008) Carbon 47:1126

    Article  Google Scholar 

  38. Halpin JC, Kardos JL (1976) Polym Eng Sci 16:344

    Article  CAS  Google Scholar 

  39. Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2004) Nano Lett 4:353

    Article  CAS  Google Scholar 

  40. Qian D, Dickey EC, Andrews R, Rantell T (2000) Appl Phys Lett 76:2868

    Article  CAS  Google Scholar 

  41. Mallick PK (1993) Fiber-reinforced composites: materials, manufacturing, and design. Marcel Dekker, New York

    Google Scholar 

  42. Wilkinson AN, Man Z, Stanford JL (2007) Compos Sci Technol 67:3360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Development Plan of Tianjin Municipal (09JCZDJC22300) and the Special Program for Key Basic Research of the Ministry of Science and Technology (2010CB334711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Hou, L., Peng, W. et al. Fabrication and characterization of polyamide 6-functionalized graphene nanocomposite fiber. J Mater Sci 47, 8052–8060 (2012). https://doi.org/10.1007/s10853-012-6695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6695-5

Keywords

Navigation