Skip to main content
Log in

The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zeolite L, with the ratio Si/Al = 4, was prepared by hydrothermal method and used to obtain composite films based on a polyimide matrix having pendant carboxylic groups. The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films was studied. The films were prepared by casting a suspension resulting from direct mixing of a poly(amic acid) (PAA) solution and zeolite L particles onto glass plates, followed by thermal imidization under controlled temperature conditions. The PAA was synthesized by solution polycondensation of a mixture of two diamines, 3,5-diaminobenzoic acid and 2,2-bis[4-(4-aminophenoxy)phenyl]propane (molar ratio 1:3), with 4,4′-oxydiphthalic anhydride, using N-methyl-2-pyrrolidone as solvent. To improve the compatibility between organic and inorganic phases, the surface of zeolite particles was modified by treating with 3-aminopropyltriethoxysilane. The surface morphology of the composite films investigated by scanning electron microscopy showed good compatibility between filler and polymer matrix. The films were flexible, tough, and exhibited high-thermal stability, having the initial decomposition temperature above 450 °C. Dynamic mechanical analysis and dielectric spectroscopy revealed sub-glass transitions, γ and β, and an α relaxation corresponding to the segmental motions above the glass transition temperature. The values of the dielectric constant at 10 kHz and 200 °C were in the range of 3.3–4.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wilson D (1990) In: Wilson D, Stenzenberger HD, Hergenrother PM (eds) Polyimides. Chapman and Hall, New York, pp 187–226

    Google Scholar 

  2. Sroog CE (1991) Prog Polym Sci 16:561

    Article  CAS  Google Scholar 

  3. Sato M (1997) In: Olabisi O (ed) Handbook of thermoplastics. Marcel Dekker, New York, pp 665–699

    Google Scholar 

  4. de Abajo J, de la Campa JG (1999) Adv Polym Sci 140:23

    Article  Google Scholar 

  5. Mark JE (2006) Acc Chem Res 39:881

    Article  CAS  Google Scholar 

  6. Hamciuc E, Hamciuc C, Bacosca I, Cristea M, Okrasa L (2011) Polym Compos 32:846

    Article  CAS  Google Scholar 

  7. Hamciuc E, Hamciuc C, Ignat M (2010) High Perform Polym 22:225

    Article  CAS  Google Scholar 

  8. Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Water Res 38:3699

    Article  CAS  Google Scholar 

  9. Tao Y, Kanoh H, Abraham L, Kaneko K (2006) Chem Rev 106:896

    Article  CAS  Google Scholar 

  10. Pode V, Popovici E, Pode R, Georgescu V (2007) Rev Roum Chim 52:983

    CAS  Google Scholar 

  11. Rauch WL, Liu M (2003) J Mater Sci 38:4307. doi:10.1023/A:1026331015093

    Article  CAS  Google Scholar 

  12. Deng Y, Deng C, Qi D, Liu C, Liu J, Zhang X, Zhao D (2009) Adv Funct Mater 21:1377

    CAS  Google Scholar 

  13. Rimoli MG, Rabaioli MR, Melisi D, Curcio A, Mondello S (2008) J Biomed Mater Res 87A:156

    Article  CAS  Google Scholar 

  14. Doussineau T, Smaihi M, Mohr GJ (2009) Adv Funct Mater 19:117

    Article  CAS  Google Scholar 

  15. Lew CM, Cai R, Yan Y (2010) Acc Chem Res 43:210

    Article  CAS  Google Scholar 

  16. Kalvachev YuA, Hayashi T, Tsubota S, Haruta M (1999) J Catal 186:228

    Article  CAS  Google Scholar 

  17. Aksoy EA, Akata B, Bac N, Hasirci N (2007) J Appl Polym Sci 104:3378

    Article  CAS  Google Scholar 

  18. Clarizia C, Algieri C, Regina A, Drioli E (2008) Microporous Mesoporous Mater 115:67

    Article  CAS  Google Scholar 

  19. Lopez AC, Silva MP, Goncalves R, Pereira MF, Botelho G, Fonseca AM, Lanceros-Mendez S, Neves IC (2010) J Phys Chem 114:14446

    Google Scholar 

  20. Yuzay IE, Auras R, Selke S (2010) J Appl Polym Sci 115:2262

    Article  CAS  Google Scholar 

  21. Lee JH, Zapata P, Choi S, Meredith JC (2010) Polymer 51:5744

    Article  CAS  Google Scholar 

  22. Papathanassioua AN, Grammatikakis J, Sakellis I, Sakkopoulos S, Vitoratos E, Dalas E (2004) J Appl Phys 96:3883

    Article  Google Scholar 

  23. Papathanassiou AN, Grammatikakis J, Sakellis I, Sakkopoulos S, Vitoratos E, Dalas E (2005) Synth Met 150:145

    Article  CAS  Google Scholar 

  24. Sakellis I, Papathanassiou AN, Grammatikakis J (2009) J Appl Phys 105:064109

    Article  Google Scholar 

  25. Vankelecom IFJ, Merckx E, Luts M, Uytterhoeven JB (1995) J Phys Chem 99:13187

    Article  CAS  Google Scholar 

  26. Pechar TW, Kim S, Vaughan B, Marand E, Tsapatsis M, Jeong HK, Cornelius CJ (2006) J Membr Sci 277:195

    Article  CAS  Google Scholar 

  27. Qiao X, Chung TS, Rajagolalan R (2006) Chem Eng Sci 61:6816

    Article  CAS  Google Scholar 

  28. Husain S, Koros WJ (2007) J Membr Sci 288:195

    Article  CAS  Google Scholar 

  29. Pechar TW, Kim S, Vaughan B, Marand E, Baranauskas V, Riffle J, Jeong HK, Tsapatsis M (2006) J Membr Sci 277:210

    Article  CAS  Google Scholar 

  30. Lee JH, Thio BJR, Bae TH, Meredith JC (2009) Langmuir 25:9101

    Article  CAS  Google Scholar 

  31. Patel R, Park JT, Hong HP, Kim JH, Min BR (2011) Polym Adv Technol 22:768

    Article  CAS  Google Scholar 

  32. Bakhtiari O, Mosleh S, Khosravi T, Mohammadi T (2011) Sep Sci Technol 46:2138

    Article  CAS  Google Scholar 

  33. Eichstadt AE, Ward TC, Bagwell MD, Farr IV, Dunson DL, McGrath JE (2002) Macromolecules 35:7561

    Article  CAS  Google Scholar 

  34. Comer AC, Heilman AL, Kalika DS (2010) Polymer 51:5245

    Article  CAS  Google Scholar 

  35. Comer AC, Kalika DS, Rowe BW, Freeman BD, Paul DR (2009) Polymer 50:891

    Article  CAS  Google Scholar 

  36. Coburn JC, Soper PD, Auman BC (1995) Macromolecules 28:3253

    Article  CAS  Google Scholar 

  37. Fragiadakis D, Logakis E, Pissis P, Kramarenko VYu, Shantalii TA, Karpova IL, Dragan KS, Privalko EG, Usenko AA, Privalko VP (2005) J Phys Conf Ser 10:139

    Article  CAS  Google Scholar 

  38. Musto P, Abbate M, Lavorgna M, Ragosta G, Scarinzi G (2006) Polymer 47:6172

    Article  CAS  Google Scholar 

  39. Hamciuc E, Hamciuc C, Olariu M (2010) Polym Eng Sci 50:520

    Article  CAS  Google Scholar 

  40. Hamciuc C, Hamciuc E, Olariu M, Ciobanu R (2010) Polym Int 59:668

    CAS  Google Scholar 

  41. Hamciuc C, Hamciuc E, Okrasa L (2011) Macromol Res 19:250

    Article  CAS  Google Scholar 

  42. Hamciuc C, Carja ID, Hamciuc E, Vlad-Bubulac T, Musteata VE (2011) High Perform Polym 23:362

    Article  CAS  Google Scholar 

  43. Hamciuc E, Hamciuc C, Bacosca I, Okrasa L (2011) Polym Eng Sci 51:2304

    Article  CAS  Google Scholar 

  44. Psarras GC, Siengchin S, Karahaliou PK, Georga SN, Krontiras CA, Kkarger-Kocsis J (2011) Polym Int 60:1715

    Article  CAS  Google Scholar 

  45. Sadegh Hassani S, Salehirad F, Aghabozorg HR, Sobat Z (2010) Cryst Res Technol 45:183

    Article  Google Scholar 

  46. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierott RA, Rouquerol J, Siemieniewsa T (1985) Pure Appl Chem 57:603

    Article  CAS  Google Scholar 

  47. Chuang TH, Yang TCK, Chang AH (2004) Int J Polym Mater 53:465

    Article  CAS  Google Scholar 

  48. Lin BP, Pan Y, Qian Y, Yuan CW (2004) J Appl Polym Sci 94:2363

    Article  CAS  Google Scholar 

  49. Psarras GC, Manolakaki E, Tsangaris GM (2002) Compos A 33:375

    Article  Google Scholar 

  50. Lee HT, Chuang KR, Chen SA, Wei PK, Hsu JH, Fann W (1995) Macromolecules 28:7645

    Article  CAS  Google Scholar 

  51. Macedo TB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Cristea at “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania, for DMA analyses. Yu. Kalvachev gratefully acknowledges the financial support by the National Science Fund, Bulgaria (Grant DTK02-47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corneliu Hamciuc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamciuc, C., Hamciuc, E., Okrasa, L. et al. The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films. J Mater Sci 47, 6354–6365 (2012). https://doi.org/10.1007/s10853-012-6560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6560-6

Keywords

Navigation