Skip to main content
Log in

Patterning of carbon nanotube structures by inkjet printing of catalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The controlled deposition of carbon nanotubes (CNTs) has many potential applications in areas such as microfluidics and field emission arrays. The use of inkjet printing to deposit catalyst offers numerous advantages for these, particularly the ability to print arbitrary patterns at low cost. We use inkjet technology to deposit iron salts, which act as a catalyst from which CNTs are subsequently grown by chemical vapour deposition. In this study, we study the effect of the iron salt concentration on ink viscosity, as well as the printing quality using optical and electron microscopy. We find that the iron salt concentration has a significant effect on the pattern quality and, most importantly, allows for the production of controllable ring-like shapes with feature size smaller than that achievable by the print-head alone. These shapes are the result of a variation of the coffee-stain effect, and could be useful particularly in fabricating microfluidic devices. We show that iron salts are suitable CNT catalysts for deposition by inkjet printing, and that their concentration is crucial both for print quality as well as for the production of novel patterns by making use of the drying behaviour of the ink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cao Q, Rogers JA (2009) Adv Mater 21(1):29. doi:10.1002/adma.200801995

    Article  CAS  Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787. doi:10.1126/science.1060928

    Article  CAS  Google Scholar 

  3. Hu L, Hecht DS, Grüner G (2010) Chem Rev 110(10):5790. doi:10.1021/cr9002962

    Article  CAS  Google Scholar 

  4. Yan Y, Chan-Park MB, Zhang Q (2007) Small 3(1):24. doi:10.1002/smll.200600354

    Article  CAS  Google Scholar 

  5. Huang S, Cai X, Liu J (2003) J Am Chem Soc 125(19):5636. doi:10.1021/ja034475c

    Article  CAS  Google Scholar 

  6. Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Appl Phys Lett 75(8):1086

    Article  CAS  Google Scholar 

  7. Fan S, Chapline MG, Franklin NR, Tombler TW, Cassell AM, Dai H (1999) Science 283(5401):512. doi:10.1126/science.283.5401.512

    Article  CAS  Google Scholar 

  8. Cassell AM, Franklin NR, Tombler TW, Chan EM, Han J, Dai H (1999) J Am Chem Soc 121(34):7975. doi:10.1021/ja992083t

    Article  CAS  Google Scholar 

  9. Sudipta R (2007) J Phys D Appl Phys 40(22):R413

    Article  Google Scholar 

  10. Ago H, Murata K, Yumura M, Yotani J, Uemura S (2003) Appl Phys Lett 82(5):811

    Article  CAS  Google Scholar 

  11. Ago H, Qi J, Tsukagoshi K, Murata K, Ohshima S, Aoyagi Y, Yumura M (2003) J Electroanal Chem 559:25. doi:10.1016/s0022-0728(02)01281-0

    Article  CAS  Google Scholar 

  12. Huang S, Fu Q, An L, Liu J (2004) Phys Chem Chem Phys 6(6):1077

    Article  CAS  Google Scholar 

  13. Mansoor M, Kinloch I, Derby B (2010) Key Eng Mater 442:7. doi:10.4028/www.scientific.net/KEM.442.7

    Article  CAS  Google Scholar 

  14. Tempel H, Joshi R, Schneider JJ (2010) Mater Chem Phys 121(1–2):178. doi:10.1016/j.matchemphys.2010.01.029

    Article  CAS  Google Scholar 

  15. Hoath SD, Hutchings IM, Martin GD, Tuladhar TR, Mackley MR, Vadillo D (2009) J Imaging Sci Technol 53(4):041208

    Article  Google Scholar 

  16. Feng JQ (2002) J Imaging Sci Technol 46(5):398

    CAS  Google Scholar 

  17. Jang D, Kim D, Moon J (2009) Langmuir 25(5):2629. doi:10.1021/la900059m

    Article  CAS  Google Scholar 

  18. Hutchings IM (2009) Ink-jet printing in micro-manufacturing: opportunities and limitations. Paper presented at the 4M/ICOMM 2009—the global conference on micro manufacture, Forschungszentrum Karlsruhe, Karlsruhe

  19. Derby B (2010) Annu Rev Mater Res 40(1):395. doi:10.1146/annurev-matsci-070909-104502

    Article  CAS  Google Scholar 

  20. Pattinson SW, Prehn K, Kinloch IA, Eder D, Koziol KKK, Schulte K, Windle AH (2012) RSC Adv. doi:10.1039/C2RA00660J

  21. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Nature 389(6653):827

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SP thanks the Engineering and Physical Sciences Research Council for the funding. KK thanks the Royal Society for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof K. K. Koziol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzikomis, C., Pattinson, S.W., Koziol, K.K.K. et al. Patterning of carbon nanotube structures by inkjet printing of catalyst. J Mater Sci 47, 5760–5765 (2012). https://doi.org/10.1007/s10853-012-6467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6467-2

Keywords

Navigation