Abstract
We used first-principles methods to generate amorphous TiO2 (a-TiO2) models and our simulations lead to chemically ordered amorphous networks. We analyzed the structural, electronic, and optical properties of the resulting structures and compared with crystalline phases. We propose that two peaks found in the Ti–Ti pair correlation correspond to edge-sharing and corner-sharing Ti–Ti pairs. Resulting coordination numbers for Ti (∼6) and O (∼3) and the corresponding angle distributions suggest that local structural features of bulk crystalline TiO2 are retained in a-TiO2. The electronic density of states and the inverse participation ratio reveal that highly localized tail states at the valence band edge are due to the displacement of O atoms from the plane containing three neighboring Ti atoms; whereas, the tail states at the conduction band edge are localized on over-coordinated Ti atoms. The \(\Upgamma\)-point electronic gap of ∼2.2 eV is comparable to calculated results for bulk crystalline TiO2 despite the presence of topological disorder in the amorphous network. The calculated dielectric functions suggest that the amorphous phase of TiO2 has isotropic optical properties in contrast to those of tetragonal rutile and anatase phases. The average static dielectric constant and the fundamental absorption edge for a-TiO2 are comparable to those of the crystalline phases.








Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Fujishima A, Honda K (1972) Nat Biotechnol 238:37
Chen X, Mao SS (2007) Chem Rev 107(7):2891
Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) J Mater Chem 11(6):1694
Petkov V, Holzhüter G, Tröge U, Gerber Th, Himmel B (1998) J Non Cryst Solids 231(1–2):17
Zhang H, Banfield JF (2002) Chem Mater 14(10):4145
Hoang VV (2007) Phys Stat Solid B 244(4):1280
Hoang VV, Zung H, Trong NHB (2007) Eur Phys J D 44(3):515
Zhang HZ, Chen B, Banfield JF (2008) Phys Rev B 78(21):214106
Hoang VV (2008) Nanotechnology 19:105706
Zou JA, Gao JC, Xie FY (2010) J Alloy Compd 497(1–2):420
Randorn C, Irvine JTS, Robertson P (2008) Int J Photoenergy. Article ID 426872
Kanna M, Wongnawa S, Buddee S, Dilokkhunakul K, Pinpithak P (2010) J Sol Gel Sci Technol 53(2):162
Jeong HY, Lee JY, Choi SY (2010) Adv Funct Mater 20(22):3912
Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA (2000) Thin Solid Films 371(1–2):126
Zhao ZW, Tay BK, Yu GQ (2004) Appl Opt 43(6):1281
Kresse G, Furthmuller J (1996) Comput Mater Sci 6(1):15
Kresse G, Furthmuller J (1996) Phys Rev B 54(16):11169
Kresse G, Hafner J (1993) Phys Rev B 47(1):558
Vanderbilt D (1990) Phys Rev B 41(11):7892
Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54(1):0163
Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2011) Materials Science and Technology Conference Proceedings, p 12
Drabold DA (2009) Eur Phys J B 68(1):1
Lide DR (ed) (1997) CRC handbook of chemistry and physics, 77th edn. CRC, Boca Raton
Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188
Shirley R, Kraft M (2010) Phys Rev B 81(7):075111
Islam MM, Bredow T, Gerson A (2007) Phys Rev B 76:045217
Fahmi A, Minot C, Silvi B, Causá M (1993) Phys Rev B 47:11717
Cromer DT, Herrington K (1955) J Am Chem Soc 77(18):4708
Howard CJ, Sabine TM, Dickson F (1992) Acta Cryst 47:462
Mo SD, Ching W (1995) Phys Rev B 51(19):13023
Amtout A, Leonelli R (1995) Phys Rev B 51(11):6842
Tang H, Berger H, Schmid PE, Lévy F, Burri G (1993) Solid State Commun 87:847
Valencia S, Marín JM, Restrepo G (2010) Open Mater Sci J 4:9
Atta-Fynn R, Biswas P, Ordejon P, Drabold DA (2004) Phys Rev B 69:085207
Cai B, Drabold DA (2011) Phys Rev B 84:075216
Cohen ML, Chelikowsky JR (1989) In: Cardona M (ed) Electronic structure and optical properties of semiconductors, 2nd edn. Springer, Berlin
Weaire D (1971) Phys Rev Lett 26:1541
Acknowledgements
We thank NSF under DMR 0903225 for supporting this study. This study was also supported in part by an allocation of computing time from the Ohio Supercomputer Center.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Prasai, B., Cai, B., Underwood, M.K. et al. Properties of amorphous and crystalline titanium dioxide from first principles. J Mater Sci 47, 7515–7521 (2012). https://doi.org/10.1007/s10853-012-6439-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-012-6439-6